清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Knowledge Graph Enhanced Topic Modeling Approach for Herb Recommendation

计算机科学 嵌入 知识图 图形 情报检索 机器学习 人工智能 理论计算机科学 自然语言处理
作者
Xinyu Wang,Ying Zhang,Xiaoling Wang,Jing Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 709-724 被引量:42
标识
DOI:10.1007/978-3-030-18576-3_42
摘要

Traditional Chinese Medicine (TCM) plays an important role in Chinese society and is an increasingly popular therapy around the world. A data-driven herb recommendation method can help TCM doctors make scientific treatment prescriptions more precisely and intelligently in real clinical practice, which can lead the development of TCM diagnosis and treatment. Previous works only analyzing short-text medical case documents ignore rich information of symptoms and herbs as well as their relations. In this paper, we propose a novel model called Knowledge Graph Embedding Enhanced Topic Model (KGETM) for TCM herb recommendation. The modeling strategy we used takes into consideration not only co-occurrence information in TCM medical cases but also comprehensive semantic relatedness of symptoms and herbs in TCM knowledge graph. The knowledge graph embeddings are obtained by TransE, a popular representation learning method of knowledge graph, on our constructed TCM knowledge graph. Then the embeddings are integrated into the topic model by a mixture of Dirichlet multinomial component and latent vector component. In addition, we further propose HC-KGETM incorporating herb compatibility based on TCM theory to characterize the diagnosis and treatment process better. Experimental results on a TCM benchmark dataset demonstrate that the proposed method outperforms state-of-the-art approaches and the promise of TCM knowledge graph embedding on herb recommendation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hazel发布了新的文献求助10
12秒前
wangsai0532完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
31秒前
37秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
科研通AI6应助科研通管家采纳,获得10
46秒前
科研通AI6应助科研通管家采纳,获得10
46秒前
hhuajw应助科研通管家采纳,获得10
46秒前
woxinyouyou完成签到,获得积分0
1分钟前
orixero应助龚广山采纳,获得10
1分钟前
1分钟前
涛1完成签到 ,获得积分10
1分钟前
1分钟前
Hazel完成签到,获得积分20
1分钟前
龚广山发布了新的文献求助10
1分钟前
老实的从菡应助Hazel采纳,获得30
1分钟前
gao0505完成签到,获得积分10
1分钟前
1437594843完成签到 ,获得积分10
1分钟前
sf完成签到 ,获得积分10
1分钟前
萝卜猪完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
绿鬼蓝完成签到 ,获得积分10
2分钟前
ajing完成签到,获得积分10
2分钟前
上官若男应助优美香露采纳,获得30
2分钟前
hyhy完成签到,获得积分10
3分钟前
hyhy发布了新的文献求助10
3分钟前
3分钟前
于yu完成签到 ,获得积分10
3分钟前
sswbzh给宇文雨文的求助进行了留言
3分钟前
3分钟前
天雨流芳完成签到 ,获得积分10
3分钟前
巫马百招完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Qing完成签到 ,获得积分10
4分钟前
4分钟前
李木禾完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706593
求助须知:如何正确求助?哪些是违规求助? 5175383
关于积分的说明 15247065
捐赠科研通 4860032
什么是DOI,文献DOI怎么找? 2608323
邀请新用户注册赠送积分活动 1559256
关于科研通互助平台的介绍 1517033