A Knowledge Graph Enhanced Topic Modeling Approach for Herb Recommendation

计算机科学 嵌入 知识图 图形 情报检索 机器学习 人工智能 理论计算机科学 自然语言处理
作者
Xinyu Wang,Ying Zhang,Xiaoling Wang,Jing Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 709-724 被引量:31
标识
DOI:10.1007/978-3-030-18576-3_42
摘要

Traditional Chinese Medicine (TCM) plays an important role in Chinese society and is an increasingly popular therapy around the world. A data-driven herb recommendation method can help TCM doctors make scientific treatment prescriptions more precisely and intelligently in real clinical practice, which can lead the development of TCM diagnosis and treatment. Previous works only analyzing short-text medical case documents ignore rich information of symptoms and herbs as well as their relations. In this paper, we propose a novel model called Knowledge Graph Embedding Enhanced Topic Model (KGETM) for TCM herb recommendation. The modeling strategy we used takes into consideration not only co-occurrence information in TCM medical cases but also comprehensive semantic relatedness of symptoms and herbs in TCM knowledge graph. The knowledge graph embeddings are obtained by TransE, a popular representation learning method of knowledge graph, on our constructed TCM knowledge graph. Then the embeddings are integrated into the topic model by a mixture of Dirichlet multinomial component and latent vector component. In addition, we further propose HC-KGETM incorporating herb compatibility based on TCM theory to characterize the diagnosis and treatment process better. Experimental results on a TCM benchmark dataset demonstrate that the proposed method outperforms state-of-the-art approaches and the promise of TCM knowledge graph embedding on herb recommendation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然问儿发布了新的文献求助10
1秒前
2秒前
燕尔蓝完成签到,获得积分10
3秒前
Cmwla发布了新的文献求助10
3秒前
3秒前
小蜻蜓应助月光族采纳,获得10
4秒前
5秒前
5秒前
hhd发布了新的文献求助10
6秒前
Trost完成签到,获得积分10
8秒前
kk完成签到,获得积分10
9秒前
10秒前
奋斗的延恶完成签到,获得积分10
10秒前
12秒前
悦耳的乐松完成签到,获得积分10
12秒前
13秒前
Rondab应助明亮的香薇采纳,获得10
14秒前
14秒前
ttb发布了新的文献求助10
15秒前
zxm发布了新的文献求助10
15秒前
年轻电源完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
动听安筠完成签到 ,获得积分10
19秒前
吮指鸡发布了新的文献求助10
21秒前
一棵草发布了新的文献求助10
22秒前
22秒前
22秒前
22秒前
嗯嗯嗯发布了新的文献求助10
23秒前
24秒前
24秒前
laojian完成签到 ,获得积分10
25秒前
yeyeye完成签到,获得积分10
25秒前
25秒前
Ava应助zxm采纳,获得10
26秒前
27秒前
xiaohong发布了新的文献求助10
27秒前
cuidalice发布了新的文献求助10
27秒前
伊萨卡完成签到 ,获得积分10
28秒前
柠檬完成签到 ,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958114
求助须知:如何正确求助?哪些是违规求助? 3504298
关于积分的说明 11117743
捐赠科研通 3235614
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547