Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods

毒性 皂甙 生物信息学 机器学习 化学 人工智能 计算机科学 生物化学 医学 有机化学 基因 病理 替代医学
作者
Suqing Zheng,Yibing Wang,Shaojun Fang,Wenping Chang,Yong Xu,Fu Lin
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:32 (6): 1014-1026 被引量:11
标识
DOI:10.1021/acs.chemrestox.8b00347
摘要

Saponins are a type of compounds bearing a hydrophobic steroid/triterpenoid moiety and hydrophilic carbohydrate branches. The majority of the saponins demonstrate a broad range of prominent pharmacological activities. Nevertheless, many saponins also possess harmful hemolytic toxicity, which can cause the lysis of erythrocytes and thereby hamper their applications in medicine. As such, the organic synthesis of diverse saponins with versatile therapeutic effects and without hemolytic toxicity has gained considerable interests among medicinal/organic chemists. To date, the non-hemolytic saponins of interests have usually been designed by the traditional trial-and-error method or discovered by serendipity. It would be more efficient to develop an in silico method to rationally design promising saponins without hemolytic toxicity prior to the laborious organic synthesis, despite the fact that there is, so far, no computational model to predict the hemolytic toxicity of saponins. To this end, we manually curate 331 hemolytic and 121 non-hemolytic saponins from the literature for the first time and build the first machine-learning-based hemolytic toxicity classification model for the saponins, which provides encouraging performance with 95% confidence intervals for accuracy (0.906 ± 0.009), precision (0.904 ± 0.012), specificity (0.711 ± 0.039), sensitivity (0.978 ± 0.010), F1-score (0.939 ± 0.006), and Matthews correlation coefficient (0.756 ± 0.025) on the test set by averaging over 19 different random data-partitioning schemes. Moreover, we have developed a free program called "e-Hemolytic-Saponin" for the automatic prediction and design of hemolytic/non-hemolytic saponins. To the best of our knowledge, we herein compile the first comprehensive saponin dataset focused on hemolytic toxicity, build the first informative model of hemolytic toxicity for the saponins, and implement the first convenient software that will enable organic/medicinal chemists to automatically predict and design the saponins of interests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
聪明芒果完成签到,获得积分10
刚刚
xiaohuhuan完成签到,获得积分10
刚刚
zhr完成签到,获得积分10
刚刚
世纪完成签到,获得积分10
1秒前
1秒前
退而求其次完成签到,获得积分10
1秒前
1秒前
2秒前
彭于晏应助高大的水壶采纳,获得10
2秒前
xw完成签到,获得积分10
3秒前
RDQ完成签到,获得积分10
3秒前
3秒前
溪泉完成签到,获得积分10
3秒前
Just1完成签到,获得积分10
3秒前
zhang完成签到,获得积分10
4秒前
加油加油啊啊啊完成签到,获得积分20
4秒前
5秒前
5秒前
Owen应助彤186采纳,获得10
5秒前
Sam完成签到,获得积分20
5秒前
6秒前
monster0101完成签到 ,获得积分10
6秒前
kkkklo完成签到,获得积分10
6秒前
Booiys完成签到,获得积分10
6秒前
6秒前
工艺员完成签到,获得积分10
6秒前
科目三应助LiuRuizhe采纳,获得10
6秒前
马家辉完成签到,获得积分10
6秒前
yyy完成签到,获得积分10
6秒前
ju龙哥发布了新的文献求助10
7秒前
快乐再出发完成签到,获得积分10
7秒前
7秒前
义气的羽毛完成签到,获得积分10
8秒前
阿西吧完成签到 ,获得积分10
8秒前
迟大猫应助lan采纳,获得10
9秒前
周小鱼完成签到,获得积分10
9秒前
10秒前
热心冷亦发布了新的文献求助10
10秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484889
求助须知:如何正确求助?哪些是违规求助? 3073816
关于积分的说明 9132776
捐赠科研通 2765431
什么是DOI,文献DOI怎么找? 1517845
邀请新用户注册赠送积分活动 702353
科研通“疑难数据库(出版商)”最低求助积分说明 701237