Using meteorological normalisation to detect interventions in air quality time series

空气质量指数 环境科学 气象学 共线性 航程(航空) 时间序列 计算机科学 地理 机器学习 统计 工程类 数学 航空航天工程
作者
Stuart K. Grange,David C. Carslaw
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:653: 578-588 被引量:261
标识
DOI:10.1016/j.scitotenv.2018.10.344
摘要

Interventions used to improve air quality are often difficult to detect in air quality time series due to the complex nature of the atmosphere. Meteorological normalisation is a technique which controls for meteorology/weather over time in an air quality time series so intervention exploration (and trend analysis) can be assessed in a robust way. A meteorological normalisation technique, based on the random forest machine learning algorithm was applied to routinely collected observations from two locations where known interventions were imposed on transportation activities which were expected to change ambient pollutant concentrations. The application of progressively stringent limits on the content of sulfur in marine fuels was very clearly represented in ambient sulfur dioxide (SO2) monitoring data in Dover, a port city in the South East of England. When the technique was applied to the oxides of nitrogen (NOx and NO2) time series at London Marylebone Road (a Central London monitoring site located in a complex urban environment), the normalised time series highlighted clear changes in NO2 and NOx which were linked to changes in primary (directly emitted) NO2 emissions at the location. The clear features in the time series were illuminated by the meteorological normalisation procedure and were not observable in the raw concentration data alone. The lack of a need for specialised inputs, and the efficient handling of collinearity and interaction effects makes the technique flexible and suitable for a range of potential applications for air quality intervention exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
花开富贵发布了新的文献求助10
5秒前
6秒前
勇敢科研不怕困难完成签到,获得积分10
6秒前
虚幻谷波发布了新的文献求助10
7秒前
老姚完成签到,获得积分10
8秒前
bkagyin应助火星上惜天采纳,获得10
9秒前
10秒前
jiujiuhuang发布了新的文献求助30
10秒前
11秒前
11秒前
充电宝应助star采纳,获得10
11秒前
13秒前
小蘑菇应助酷酷尔白采纳,获得10
13秒前
13秒前
小刘不太懂完成签到 ,获得积分10
14秒前
14秒前
茜茜哥哥发布了新的文献求助10
17秒前
yyer发布了新的文献求助10
17秒前
18秒前
烟花应助热心小松鼠采纳,获得10
19秒前
Lanyiyang应助卷发生长因子采纳,获得10
19秒前
20秒前
落后妖妖发布了新的文献求助10
21秒前
单薄的南蕾完成签到 ,获得积分10
21秒前
22秒前
花开富贵完成签到,获得积分10
24秒前
nengzou完成签到 ,获得积分10
24秒前
maox1aoxin应助任新元采纳,获得150
25秒前
26秒前
热心小松鼠完成签到,获得积分10
26秒前
27秒前
LL完成签到,获得积分10
27秒前
丘比特应助沉静的画板采纳,获得10
28秒前
酷波er应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
星辰大海应助科研通管家采纳,获得10
30秒前
CipherSage应助科研通管家采纳,获得10
30秒前
脑洞疼应助科研通管家采纳,获得10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313875
求助须知:如何正确求助?哪些是违规求助? 2946172
关于积分的说明 8528716
捐赠科研通 2621728
什么是DOI,文献DOI怎么找? 1434045
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650697