亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using meteorological normalisation to detect interventions in air quality time series

空气质量指数 环境科学 气象学 共线性 航程(航空) 时间序列 计算机科学 地理 机器学习 统计 工程类 数学 航空航天工程
作者
Stuart K. Grange,David C. Carslaw
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:653: 578-588 被引量:261
标识
DOI:10.1016/j.scitotenv.2018.10.344
摘要

Interventions used to improve air quality are often difficult to detect in air quality time series due to the complex nature of the atmosphere. Meteorological normalisation is a technique which controls for meteorology/weather over time in an air quality time series so intervention exploration (and trend analysis) can be assessed in a robust way. A meteorological normalisation technique, based on the random forest machine learning algorithm was applied to routinely collected observations from two locations where known interventions were imposed on transportation activities which were expected to change ambient pollutant concentrations. The application of progressively stringent limits on the content of sulfur in marine fuels was very clearly represented in ambient sulfur dioxide (SO2) monitoring data in Dover, a port city in the South East of England. When the technique was applied to the oxides of nitrogen (NOx and NO2) time series at London Marylebone Road (a Central London monitoring site located in a complex urban environment), the normalised time series highlighted clear changes in NO2 and NOx which were linked to changes in primary (directly emitted) NO2 emissions at the location. The clear features in the time series were illuminated by the meteorological normalisation procedure and were not observable in the raw concentration data alone. The lack of a need for specialised inputs, and the efficient handling of collinearity and interaction effects makes the technique flexible and suitable for a range of potential applications for air quality intervention exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科目三应助帅气雨珍采纳,获得20
7秒前
25秒前
Mark_He发布了新的文献求助10
31秒前
淡然的鸽子完成签到 ,获得积分10
32秒前
cen完成签到,获得积分10
40秒前
47秒前
CodeCraft应助曹能豪采纳,获得10
48秒前
搜集达人应助科研通管家采纳,获得10
49秒前
49秒前
49秒前
49秒前
xin完成签到,获得积分10
51秒前
哇啦啦发布了新的文献求助10
53秒前
能干觅夏完成签到 ,获得积分10
56秒前
56秒前
曹能豪发布了新的文献求助10
1分钟前
黑豆也发布了新的文献求助10
1分钟前
桐桐应助粗心的小蜜蜂采纳,获得10
1分钟前
黑豆也完成签到,获得积分10
1分钟前
善良的蛋挞完成签到,获得积分10
1分钟前
1分钟前
xftx完成签到,获得积分10
1分钟前
Tendency完成签到 ,获得积分10
1分钟前
栗子完成签到,获得积分10
1分钟前
文豪发布了新的文献求助10
1分钟前
搜集达人应助文豪采纳,获得10
1分钟前
2分钟前
2分钟前
lyu发布了新的文献求助10
2分钟前
精明的荔枝完成签到 ,获得积分10
2分钟前
2分钟前
于清绝完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
TiAmo完成签到 ,获得积分10
2分钟前
帅气雨珍发布了新的文献求助20
2分钟前
童俊江完成签到 ,获得积分20
2分钟前
FashionBoy应助小LAN采纳,获得10
2分钟前
Jim发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581480
求助须知:如何正确求助?哪些是违规求助? 3999419
关于积分的说明 12381258
捐赠科研通 3674066
什么是DOI,文献DOI怎么找? 2024837
邀请新用户注册赠送积分活动 1058695
科研通“疑难数据库(出版商)”最低求助积分说明 945455