Using meteorological normalisation to detect interventions in air quality time series

空气质量指数 环境科学 气象学 共线性 地形 航程(航空) 时间序列 空气污染 系列(地层学) 二氧化硫 遥感 心理干预 原始数据 计算机科学 污染物 动态时间归整 数据质量 飞行计划 空气污染物 环境监测 质量(理念) 端口(电路理论)
作者
Stuart K. Grange,David C. Carslaw
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:653: 578-588 被引量:295
标识
DOI:10.1016/j.scitotenv.2018.10.344
摘要

Interventions used to improve air quality are often difficult to detect in air quality time series due to the complex nature of the atmosphere. Meteorological normalisation is a technique which controls for meteorology/weather over time in an air quality time series so intervention exploration (and trend analysis) can be assessed in a robust way. A meteorological normalisation technique, based on the random forest machine learning algorithm was applied to routinely collected observations from two locations where known interventions were imposed on transportation activities which were expected to change ambient pollutant concentrations. The application of progressively stringent limits on the content of sulfur in marine fuels was very clearly represented in ambient sulfur dioxide (SO2) monitoring data in Dover, a port city in the South East of England. When the technique was applied to the oxides of nitrogen (NOx and NO2) time series at London Marylebone Road (a Central London monitoring site located in a complex urban environment), the normalised time series highlighted clear changes in NO2 and NOx which were linked to changes in primary (directly emitted) NO2 emissions at the location. The clear features in the time series were illuminated by the meteorological normalisation procedure and were not observable in the raw concentration data alone. The lack of a need for specialised inputs, and the efficient handling of collinearity and interaction effects makes the technique flexible and suitable for a range of potential applications for air quality intervention exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tammy完成签到,获得积分10
刚刚
烟花应助Yu采纳,获得10
刚刚
完美世界应助DXiao采纳,获得10
刚刚
Cecila完成签到,获得积分10
1秒前
天天快乐应助小叙采纳,获得10
1秒前
橙子完成签到,获得积分10
1秒前
不将就完成签到,获得积分10
1秒前
清脆的飞丹完成签到,获得积分10
2秒前
JamesPei应助KQ采纳,获得10
2秒前
丘比特应助liu采纳,获得10
2秒前
Happy422完成签到,获得积分10
2秒前
1223完成签到,获得积分10
2秒前
赤恩完成签到,获得积分10
2秒前
香蕉觅云应助wys2493采纳,获得10
2秒前
duoya发布了新的文献求助10
3秒前
pcr163应助妙妙0采纳,获得50
3秒前
一自文又欠完成签到 ,获得积分10
3秒前
文静完成签到,获得积分20
3秒前
爆米花应助眯眯眼的柠檬采纳,获得10
3秒前
wql完成签到,获得积分10
4秒前
天天快乐应助Cozy采纳,获得10
4秒前
科研通AI6应助slim采纳,获得10
5秒前
谦让翅膀完成签到,获得积分10
5秒前
小晴天完成签到,获得积分10
5秒前
Huang完成签到,获得积分10
5秒前
不知名的小蜜蜂完成签到,获得积分10
5秒前
5秒前
Yiran完成签到,获得积分10
6秒前
6秒前
7秒前
可爱的函函应助王碱采纳,获得10
8秒前
轻松绿旋完成签到,获得积分10
8秒前
9秒前
9秒前
揽星发布了新的文献求助10
9秒前
无荒发布了新的文献求助10
10秒前
麻油香菜发布了新的文献求助10
10秒前
dolabmu完成签到 ,获得积分10
11秒前
winwin完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629618
求助须知:如何正确求助?哪些是违规求助? 4720333
关于积分的说明 14970297
捐赠科研通 4787673
什么是DOI,文献DOI怎么找? 2556435
邀请新用户注册赠送积分活动 1517561
关于科研通互助平台的介绍 1478251