材料科学
纳米孔
阳极
电流密度
石墨烯
储能
导电体
多孔性
锂(药物)
电极
枝晶(数学)
纳米技术
复合材料
物理
内分泌学
物理化学
功率(物理)
化学
医学
量子力学
数学
几何学
作者
Gang Huang,Jiuhui Han,Fan Zhang,Ziqian Wang,Hamzeh Kashani,Kentaro Watanabe,Pan Liu
标识
DOI:10.1002/adma.201805334
摘要
The key bottlenecks hindering the practical implementations of lithium-metal anodes in high-energy-density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high-surface-area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen-doped graphene as the sought-after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite-free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long-term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high-energy-density rechargeable lithium batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI