Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection

自编码 可解释性 计算机科学 非负矩阵分解 人工智能 水准点(测量) 矩阵分解 深度学习 机器学习 特征(语言学) 群落结构 模式识别(心理学) 数据挖掘 数学 地理 哲学 大地测量学 物理 组合数学 特征向量 量子力学 语言学
作者
Fanghua Ye,Chuan Chen,Zibin Zheng
标识
DOI:10.1145/3269206.3271697
摘要

Community structure is ubiquitous in real-world complex networks. The task of community detection over these networks is of paramount importance in a variety of applications. Recently, nonnegative matrix factorization (NMF) has been widely adopted for community detection due to its great interpretability and its natural fitness for capturing the community membership of nodes. However, the existing NMF-based community detection approaches are shallow methods. They learn the community assignment by mapping the original network to the community membership space directly. Considering the complicated and diversified topology structures of real-world networks, it is highly possible that the mapping between the original network and the community membership space contains rather complex hierarchical information, which cannot be interpreted by classic shallow NMF-based approaches. Inspired by the unique feature representation learning capability of deep autoencoder, we propose a novel model, named Deep Autoencoder-like NMF (DANMF), for community detection. Similar to deep autoencoder, DANMF consists of an encoder component and a decoder component. This architecture empowers DANMF to learn the hierarchical mappings between the original network and the final community assignment with implicit low-to-high level hidden attributes of the original network learnt in the intermediate layers. Thus, DANMF should be better suited to the community detection task. Extensive experiments on benchmark datasets demonstrate that DANMF can achieve better performance than the state-of-the-art NMF-based community detection approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SC武完成签到,获得积分10
刚刚
17完成签到 ,获得积分10
1秒前
汉堡包应助lilyz615采纳,获得10
1秒前
猪猪hero发布了新的文献求助10
1秒前
nuannuan发布了新的文献求助20
1秒前
肝不动的牛马完成签到,获得积分10
2秒前
2秒前
3秒前
科研通AI6应助shmily采纳,获得10
4秒前
sdhjad完成签到 ,获得积分10
4秒前
6T2完成签到,获得积分10
4秒前
Xc完成签到,获得积分10
5秒前
5秒前
搜集达人应助carly采纳,获得10
6秒前
7秒前
张乐完成签到,获得积分10
7秒前
猪猪hero发布了新的文献求助10
9秒前
zhengyuci完成签到,获得积分10
9秒前
科研通AI2S应助人参跳芭蕾采纳,获得10
9秒前
miao完成签到,获得积分10
9秒前
lala发布了新的文献求助10
10秒前
深情的白薇完成签到,获得积分10
11秒前
友好怜蕾完成签到,获得积分20
11秒前
健壮从霜完成签到,获得积分10
11秒前
LS-GENIUS完成签到,获得积分10
12秒前
12秒前
13秒前
Jenny712完成签到,获得积分10
14秒前
丽丽发布了新的文献求助10
14秒前
lawang发布了新的文献求助30
15秒前
realrrr完成签到 ,获得积分10
15秒前
16秒前
科研顺利完成签到 ,获得积分10
16秒前
16秒前
彭于晏应助发多多采纳,获得10
16秒前
蜗牛123发布了新的文献求助10
18秒前
18秒前
18秒前
赘婿应助David采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414857
求助须知:如何正确求助?哪些是违规求助? 4531710
关于积分的说明 14129736
捐赠科研通 4447140
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431701
关于科研通互助平台的介绍 1409315