Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection

自编码 可解释性 计算机科学 非负矩阵分解 人工智能 水准点(测量) 矩阵分解 深度学习 机器学习 特征(语言学) 群落结构 模式识别(心理学) 数据挖掘 数学 地理 哲学 大地测量学 物理 组合数学 特征向量 量子力学 语言学
作者
Fanghua Ye,Chuan Chen,Zibin Zheng
标识
DOI:10.1145/3269206.3271697
摘要

Community structure is ubiquitous in real-world complex networks. The task of community detection over these networks is of paramount importance in a variety of applications. Recently, nonnegative matrix factorization (NMF) has been widely adopted for community detection due to its great interpretability and its natural fitness for capturing the community membership of nodes. However, the existing NMF-based community detection approaches are shallow methods. They learn the community assignment by mapping the original network to the community membership space directly. Considering the complicated and diversified topology structures of real-world networks, it is highly possible that the mapping between the original network and the community membership space contains rather complex hierarchical information, which cannot be interpreted by classic shallow NMF-based approaches. Inspired by the unique feature representation learning capability of deep autoencoder, we propose a novel model, named Deep Autoencoder-like NMF (DANMF), for community detection. Similar to deep autoencoder, DANMF consists of an encoder component and a decoder component. This architecture empowers DANMF to learn the hierarchical mappings between the original network and the final community assignment with implicit low-to-high level hidden attributes of the original network learnt in the intermediate layers. Thus, DANMF should be better suited to the community detection task. Extensive experiments on benchmark datasets demonstrate that DANMF can achieve better performance than the state-of-the-art NMF-based community detection approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助ZYH采纳,获得10
1秒前
英姑应助大胆愫采纳,获得10
1秒前
FashionBoy应助丰富的鱼采纳,获得10
1秒前
1秒前
JustSoleSoul发布了新的文献求助10
1秒前
喜宝完成签到 ,获得积分10
1秒前
小乔应助TCB采纳,获得10
1秒前
1秒前
chen完成签到,获得积分20
2秒前
笨笨百招应助天真依玉采纳,获得10
2秒前
牛马一生发布了新的文献求助10
3秒前
3秒前
3秒前
万能图书馆应助鱼子西采纳,获得10
4秒前
4秒前
高高烨磊完成签到,获得积分10
4秒前
抓狂的小新完成签到,获得积分10
5秒前
33发布了新的文献求助30
5秒前
5秒前
hcy完成签到,获得积分10
5秒前
可爱的函函应助清晨采纳,获得10
5秒前
LONGLONG发布了新的文献求助10
5秒前
陈宇发布了新的文献求助10
6秒前
肥牛芋泥泥完成签到,获得积分10
6秒前
慕青应助白白采纳,获得10
7秒前
斯文败类应助健忘的念蕾采纳,获得10
7秒前
小榕完成签到,获得积分20
8秒前
HHHHH完成签到,获得积分10
8秒前
雨歌发布了新的文献求助10
8秒前
8秒前
666完成签到,获得积分10
8秒前
沙拉酱发布了新的文献求助10
8秒前
柚柚又发布了新的文献求助10
9秒前
zhx245259630完成签到,获得积分10
9秒前
llllly完成签到,获得积分10
9秒前
温暖的孤兰完成签到 ,获得积分10
9秒前
时间胶囊发布了新的文献求助10
9秒前
liuwenjie发布了新的文献求助10
9秒前
10秒前
wmm20035完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645714
求助须知:如何正确求助?哪些是违规求助? 4769624
关于积分的说明 15031726
捐赠科研通 4804481
什么是DOI,文献DOI怎么找? 2569019
邀请新用户注册赠送积分活动 1526095
关于科研通互助平台的介绍 1485700