Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection

自编码 可解释性 计算机科学 非负矩阵分解 人工智能 水准点(测量) 矩阵分解 深度学习 机器学习 特征(语言学) 群落结构 模式识别(心理学) 数据挖掘 数学 地理 哲学 大地测量学 物理 组合数学 特征向量 量子力学 语言学
作者
Fanghua Ye,Chuan Chen,Zibin Zheng
标识
DOI:10.1145/3269206.3271697
摘要

Community structure is ubiquitous in real-world complex networks. The task of community detection over these networks is of paramount importance in a variety of applications. Recently, nonnegative matrix factorization (NMF) has been widely adopted for community detection due to its great interpretability and its natural fitness for capturing the community membership of nodes. However, the existing NMF-based community detection approaches are shallow methods. They learn the community assignment by mapping the original network to the community membership space directly. Considering the complicated and diversified topology structures of real-world networks, it is highly possible that the mapping between the original network and the community membership space contains rather complex hierarchical information, which cannot be interpreted by classic shallow NMF-based approaches. Inspired by the unique feature representation learning capability of deep autoencoder, we propose a novel model, named Deep Autoencoder-like NMF (DANMF), for community detection. Similar to deep autoencoder, DANMF consists of an encoder component and a decoder component. This architecture empowers DANMF to learn the hierarchical mappings between the original network and the final community assignment with implicit low-to-high level hidden attributes of the original network learnt in the intermediate layers. Thus, DANMF should be better suited to the community detection task. Extensive experiments on benchmark datasets demonstrate that DANMF can achieve better performance than the state-of-the-art NMF-based community detection approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助qiyihan采纳,获得10
1秒前
小马甲应助敬之采纳,获得10
1秒前
正一笑完成签到,获得积分10
1秒前
1秒前
1秒前
浮游应助Alon采纳,获得10
1秒前
科目三应助123采纳,获得10
2秒前
Sheng应助槑槑采纳,获得10
2秒前
wushuai完成签到,获得积分10
2秒前
上官若男应助Me采纳,获得10
2秒前
星辰大海应助persist采纳,获得10
3秒前
zhuzhu发布了新的文献求助10
3秒前
HLQF完成签到,获得积分10
3秒前
NexusExplorer应助陈梦鼠采纳,获得10
3秒前
领导范儿应助jia采纳,获得10
3秒前
在水一方应助星星人采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
自然发布了新的文献求助30
4秒前
老福贵儿应助senli2018采纳,获得10
5秒前
传奇3应助宋宋宋2采纳,获得10
5秒前
5秒前
MARGARET完成签到,获得积分10
5秒前
英勇明雪发布了新的文献求助10
5秒前
gzl发布了新的文献求助10
6秒前
Oasis完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
MoLuan完成签到,获得积分10
7秒前
威武从霜发布了新的文献求助10
7秒前
7秒前
超级的白竹完成签到,获得积分20
8秒前
8秒前
8秒前
默默幼南完成签到,获得积分10
8秒前
8秒前
现实的青文完成签到,获得积分10
9秒前
星辰大海应助zzdd采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688