已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection

自编码 可解释性 计算机科学 非负矩阵分解 人工智能 水准点(测量) 矩阵分解 深度学习 机器学习 特征(语言学) 群落结构 模式识别(心理学) 数据挖掘 数学 地理 哲学 大地测量学 物理 组合数学 特征向量 量子力学 语言学
作者
Fanghua Ye,Chuan Chen,Zibin Zheng
标识
DOI:10.1145/3269206.3271697
摘要

Community structure is ubiquitous in real-world complex networks. The task of community detection over these networks is of paramount importance in a variety of applications. Recently, nonnegative matrix factorization (NMF) has been widely adopted for community detection due to its great interpretability and its natural fitness for capturing the community membership of nodes. However, the existing NMF-based community detection approaches are shallow methods. They learn the community assignment by mapping the original network to the community membership space directly. Considering the complicated and diversified topology structures of real-world networks, it is highly possible that the mapping between the original network and the community membership space contains rather complex hierarchical information, which cannot be interpreted by classic shallow NMF-based approaches. Inspired by the unique feature representation learning capability of deep autoencoder, we propose a novel model, named Deep Autoencoder-like NMF (DANMF), for community detection. Similar to deep autoencoder, DANMF consists of an encoder component and a decoder component. This architecture empowers DANMF to learn the hierarchical mappings between the original network and the final community assignment with implicit low-to-high level hidden attributes of the original network learnt in the intermediate layers. Thus, DANMF should be better suited to the community detection task. Extensive experiments on benchmark datasets demonstrate that DANMF can achieve better performance than the state-of-the-art NMF-based community detection approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
3秒前
4秒前
隐形曼青应助流歌采纳,获得10
4秒前
6秒前
Xieyusen发布了新的文献求助10
7秒前
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
小稻草人应助科研通管家采纳,获得10
10秒前
FIN应助科研通管家采纳,获得20
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
Lucas应助oceana采纳,获得10
12秒前
8531完成签到,获得积分10
12秒前
123456完成签到,获得积分10
16秒前
16秒前
17秒前
Dan发布了新的文献求助30
17秒前
所所应助祁尒采纳,获得10
18秒前
Tong发布了新的文献求助10
19秒前
蓝天白云发布了新的文献求助10
23秒前
23秒前
moncypool发布了新的文献求助10
24秒前
24秒前
无语大王完成签到,获得积分10
26秒前
孙子文发布了新的文献求助10
30秒前
优美的问凝完成签到 ,获得积分10
30秒前
30秒前
lvolt完成签到,获得积分10
31秒前
无喱酱发布了新的文献求助10
31秒前
不良帅完成签到,获得积分10
34秒前
34秒前
yydragen应助guojingjing采纳,获得10
35秒前
汉堡包应助阿秋秋秋采纳,获得10
35秒前
677完成签到,获得积分10
36秒前
啦啦啦完成签到 ,获得积分10
36秒前
欢欢完成签到,获得积分20
36秒前
oceana发布了新的文献求助10
36秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959920
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128046
捐赠科研通 3238071
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021