Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection

自编码 可解释性 计算机科学 非负矩阵分解 人工智能 水准点(测量) 矩阵分解 深度学习 机器学习 特征(语言学) 群落结构 模式识别(心理学) 数据挖掘 数学 地理 哲学 大地测量学 物理 组合数学 特征向量 量子力学 语言学
作者
Fanghua Ye,Chuan Chen,Zibin Zheng
标识
DOI:10.1145/3269206.3271697
摘要

Community structure is ubiquitous in real-world complex networks. The task of community detection over these networks is of paramount importance in a variety of applications. Recently, nonnegative matrix factorization (NMF) has been widely adopted for community detection due to its great interpretability and its natural fitness for capturing the community membership of nodes. However, the existing NMF-based community detection approaches are shallow methods. They learn the community assignment by mapping the original network to the community membership space directly. Considering the complicated and diversified topology structures of real-world networks, it is highly possible that the mapping between the original network and the community membership space contains rather complex hierarchical information, which cannot be interpreted by classic shallow NMF-based approaches. Inspired by the unique feature representation learning capability of deep autoencoder, we propose a novel model, named Deep Autoencoder-like NMF (DANMF), for community detection. Similar to deep autoencoder, DANMF consists of an encoder component and a decoder component. This architecture empowers DANMF to learn the hierarchical mappings between the original network and the final community assignment with implicit low-to-high level hidden attributes of the original network learnt in the intermediate layers. Thus, DANMF should be better suited to the community detection task. Extensive experiments on benchmark datasets demonstrate that DANMF can achieve better performance than the state-of-the-art NMF-based community detection approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yulili完成签到,获得积分10
1秒前
1秒前
2秒前
唠叨的乌发布了新的文献求助10
2秒前
芷兰丁香发布了新的文献求助10
3秒前
杨晗晗完成签到,获得积分10
3秒前
4秒前
5秒前
小二郎应助范12采纳,获得10
5秒前
巴尔的天使完成签到 ,获得积分10
5秒前
6秒前
炼丹发布了新的文献求助10
7秒前
xzy998应助隋菿99采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
11尹璐力发布了新的文献求助30
9秒前
锅里有两条鱼完成签到 ,获得积分10
10秒前
蛰曜完成签到,获得积分10
10秒前
11秒前
陌上发布了新的文献求助10
11秒前
13秒前
大个应助不吃香菜采纳,获得10
16秒前
17秒前
陈文学完成签到,获得积分10
17秒前
17秒前
浮游应助动听的雪碧采纳,获得10
18秒前
zf完成签到 ,获得积分10
18秒前
和谐宛发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
sly发布了新的文献求助10
19秒前
打打应助QIQI采纳,获得10
19秒前
20秒前
星远发布了新的文献求助10
20秒前
震动的沛山完成签到,获得积分10
20秒前
科研通AI6应助木子采纳,获得10
21秒前
21秒前
awei发布了新的文献求助10
22秒前
zz完成签到,获得积分10
22秒前
22秒前
feitian201861发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469254
求助须知:如何正确求助?哪些是违规求助? 4572366
关于积分的说明 14335510
捐赠科研通 4499281
什么是DOI,文献DOI怎么找? 2464986
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051