Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection

自编码 可解释性 计算机科学 非负矩阵分解 人工智能 水准点(测量) 矩阵分解 深度学习 机器学习 特征(语言学) 群落结构 模式识别(心理学) 数据挖掘 数学 地理 哲学 大地测量学 物理 组合数学 特征向量 量子力学 语言学
作者
Fanghua Ye,Chuan Chen,Zibin Zheng
标识
DOI:10.1145/3269206.3271697
摘要

Community structure is ubiquitous in real-world complex networks. The task of community detection over these networks is of paramount importance in a variety of applications. Recently, nonnegative matrix factorization (NMF) has been widely adopted for community detection due to its great interpretability and its natural fitness for capturing the community membership of nodes. However, the existing NMF-based community detection approaches are shallow methods. They learn the community assignment by mapping the original network to the community membership space directly. Considering the complicated and diversified topology structures of real-world networks, it is highly possible that the mapping between the original network and the community membership space contains rather complex hierarchical information, which cannot be interpreted by classic shallow NMF-based approaches. Inspired by the unique feature representation learning capability of deep autoencoder, we propose a novel model, named Deep Autoencoder-like NMF (DANMF), for community detection. Similar to deep autoencoder, DANMF consists of an encoder component and a decoder component. This architecture empowers DANMF to learn the hierarchical mappings between the original network and the final community assignment with implicit low-to-high level hidden attributes of the original network learnt in the intermediate layers. Thus, DANMF should be better suited to the community detection task. Extensive experiments on benchmark datasets demonstrate that DANMF can achieve better performance than the state-of-the-art NMF-based community detection approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
洛必达完成签到,获得积分10
1秒前
戚小发布了新的文献求助10
2秒前
2秒前
科研通AI6应助Luojiayi采纳,获得10
3秒前
Ellalala完成签到 ,获得积分10
4秒前
可爱的函函应助so采纳,获得10
4秒前
山谷与花发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
9秒前
蔺天宇完成签到,获得积分10
9秒前
星辰大海应助Whaoe采纳,获得10
9秒前
宫瑾瑜发布了新的文献求助10
10秒前
11秒前
Dr_Fang完成签到,获得积分10
11秒前
12秒前
12秒前
ding应助勤奋的溪流采纳,获得10
13秒前
传奇3应助繁星长明采纳,获得10
13秒前
元谷雪应助细腻戒指采纳,获得10
14秒前
自觉山柏发布了新的文献求助10
16秒前
16秒前
16秒前
Stars发布了新的文献求助30
17秒前
胡图图完成签到,获得积分20
18秒前
18秒前
18秒前
Lee发布了新的文献求助10
18秒前
爆米花应助luoliping采纳,获得10
19秒前
赘婿应助Freedom采纳,获得10
20秒前
20秒前
20秒前
mistletoe发布了新的文献求助10
21秒前
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
so发布了新的文献求助10
23秒前
高贵一德完成签到 ,获得积分20
24秒前
烟花应助小城故事和冰雨采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578739
求助须知:如何正确求助?哪些是违规求助? 4663520
关于积分的说明 14747032
捐赠科研通 4604483
什么是DOI,文献DOI怎么找? 2526947
邀请新用户注册赠送积分活动 1496563
关于科研通互助平台的介绍 1465838