清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection

自编码 可解释性 计算机科学 非负矩阵分解 人工智能 水准点(测量) 矩阵分解 深度学习 机器学习 特征(语言学) 群落结构 模式识别(心理学) 数据挖掘 数学 地理 哲学 大地测量学 物理 组合数学 特征向量 量子力学 语言学
作者
Fanghua Ye,Chuan Chen,Zibin Zheng
标识
DOI:10.1145/3269206.3271697
摘要

Community structure is ubiquitous in real-world complex networks. The task of community detection over these networks is of paramount importance in a variety of applications. Recently, nonnegative matrix factorization (NMF) has been widely adopted for community detection due to its great interpretability and its natural fitness for capturing the community membership of nodes. However, the existing NMF-based community detection approaches are shallow methods. They learn the community assignment by mapping the original network to the community membership space directly. Considering the complicated and diversified topology structures of real-world networks, it is highly possible that the mapping between the original network and the community membership space contains rather complex hierarchical information, which cannot be interpreted by classic shallow NMF-based approaches. Inspired by the unique feature representation learning capability of deep autoencoder, we propose a novel model, named Deep Autoencoder-like NMF (DANMF), for community detection. Similar to deep autoencoder, DANMF consists of an encoder component and a decoder component. This architecture empowers DANMF to learn the hierarchical mappings between the original network and the final community assignment with implicit low-to-high level hidden attributes of the original network learnt in the intermediate layers. Thus, DANMF should be better suited to the community detection task. Extensive experiments on benchmark datasets demonstrate that DANMF can achieve better performance than the state-of-the-art NMF-based community detection approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助niko采纳,获得10
2秒前
852应助niko采纳,获得10
2秒前
深情安青应助niko采纳,获得10
2秒前
汉堡包应助niko采纳,获得10
2秒前
慕青应助niko采纳,获得10
2秒前
完美世界应助niko采纳,获得10
2秒前
李健应助niko采纳,获得10
2秒前
打打应助niko采纳,获得10
2秒前
CipherSage应助niko采纳,获得10
2秒前
科目三应助niko采纳,获得10
2秒前
2秒前
科研通AI6应助niko采纳,获得10
7秒前
情怀应助niko采纳,获得10
7秒前
科研通AI6应助niko采纳,获得10
7秒前
852应助niko采纳,获得10
7秒前
科研通AI6应助niko采纳,获得30
7秒前
无花果应助niko采纳,获得10
7秒前
科研通AI6应助niko采纳,获得10
7秒前
隐形曼青应助niko采纳,获得10
7秒前
李健的小迷弟应助niko采纳,获得10
7秒前
英姑应助niko采纳,获得10
7秒前
随心所欲完成签到 ,获得积分10
10秒前
希望天下0贩的0应助niko采纳,获得10
12秒前
情怀应助niko采纳,获得10
12秒前
科研通AI6应助niko采纳,获得10
12秒前
所所应助niko采纳,获得10
12秒前
科研通AI6应助niko采纳,获得10
12秒前
情怀应助niko采纳,获得10
12秒前
无花果应助niko采纳,获得10
12秒前
上官若男应助niko采纳,获得10
12秒前
研友_VZG7GZ应助niko采纳,获得10
12秒前
小蘑菇应助niko采纳,获得30
12秒前
嗯嗯的嗯嗯完成签到,获得积分10
13秒前
小蘑菇应助niko采纳,获得10
17秒前
Hello应助niko采纳,获得10
17秒前
JamesPei应助niko采纳,获得10
17秒前
慕青应助niko采纳,获得10
17秒前
科研通AI6应助niko采纳,获得10
17秒前
Ava应助niko采纳,获得10
17秒前
英俊的铭应助niko采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534355
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582572
捐赠科研通 4562591
什么是DOI,文献DOI怎么找? 2500254
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450981