A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries

材料科学 阳极 纳米技术 电化学 锂(药物) 多孔性 化学工程 多孔硅 涂层 纳米颗粒 离子 千分尺 空隙(复合材料) 光电子学 复合材料 电极 物理化学 内分泌学 工程类 物理 化学 光学 医学 量子力学
作者
Haiping Jia,Jianming Zheng,Junhua Song,Langli Luo,Ran Yi,Luis Estevez,Wengao Zhao,Rajankumar L. Patel,Xiaolin Li,Ji‐Guang Zhang
出处
期刊:Nano Energy [Elsevier]
卷期号:50: 589-597 被引量:216
标识
DOI:10.1016/j.nanoen.2018.05.048
摘要

Porous structured silicon (p-Si) has been recognized as one of the most promising anodes for Li-ion batteries. However, many available methods to synthesize p-Si are difficult to scale up due to their high production cost. Here we introduce a new approach to obtain spherical micrometer-sized silicon with unique porous structure by using a microemulsion of the cost-effective of silica nanoparticles and magnesiothermic reduction method. The spherical micron-sized p-Si particles prepared by this approach consist of highly aligned nano-sized silicon and exhibit a tap density close to that of bulk Si particles. They have demonstrated significantly improved electrochemical stability compared to nano-Si. Well controlled void space and a highly graphitic carbon coating on the p-Si particles enable good stability of the structure and low overall resistance, thus resulting in a Si-based anode with high capacity (~1467 mAh g−1 at 2.6 A g−1), enhanced cycle life (370 cycles with 83% capacity retention), and high rate capability (~650 mAh g−1 at 11A g−1). This approach may also be generalized to prepare other hierarchical structured high capacity anode materials for constructing high energy density lithium ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MEME发布了新的文献求助10
2秒前
2秒前
情怀应助LSH970829采纳,获得10
2秒前
CHINA_C13发布了新的文献求助10
5秒前
Mars发布了新的文献求助10
6秒前
哈哈哈完成签到,获得积分10
6秒前
玛卡巴卡应助平常的毛豆采纳,获得100
7秒前
默默的青旋完成签到,获得积分10
8秒前
11秒前
搜集达人应助淡淡采白采纳,获得10
11秒前
高高代珊完成签到 ,获得积分10
12秒前
gmc发布了新的文献求助10
13秒前
13秒前
14秒前
善学以致用应助Mian采纳,获得10
14秒前
学科共进发布了新的文献求助60
15秒前
LWJ完成签到 ,获得积分10
15秒前
15秒前
缓慢的糖豆完成签到,获得积分10
16秒前
阉太狼完成签到,获得积分10
16秒前
17秒前
soory完成签到,获得积分10
18秒前
任性的傲柏完成签到,获得积分10
18秒前
lwk205完成签到,获得积分0
18秒前
19秒前
一一完成签到,获得积分10
19秒前
19秒前
19秒前
高中生完成签到,获得积分10
20秒前
20秒前
20秒前
希望天下0贩的0应助TT采纳,获得10
21秒前
xxegt完成签到 ,获得积分10
21秒前
22秒前
爱吃泡芙发布了新的文献求助10
22秒前
susu完成签到,获得积分10
24秒前
会神发布了新的文献求助10
24秒前
KK完成签到,获得积分10
25秒前
充电宝应助justin采纳,获得10
27秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824