Self-gating in semiconductor electrocatalysis

电催化剂 半导体 材料科学 电解质 半导体器件 阳极 纳米技术 电化学 化学 光电子学 电极 物理化学 图层(电子)
作者
Yongmin He,Qiyuan He,Luqing Wang,Chao Zhu,Prafful Golani,Albertus D. Handoko,Xuechao Yu,Caitian Gao,Mengning Ding,Xuewen Wang,Fucai Liu,Qingsheng Zeng,Peng Yu,Shasha Guo,Boris I. Yakobson,Liang Wang,Zhi Wei Seh,Zhuhua Zhang,Minghong Wu,Qi Jie Wang,Hua Zhang,Zheng Liu
出处
期刊:Nature Materials [Springer Nature]
卷期号:18 (10): 1098-1104 被引量:198
标识
DOI:10.1038/s41563-019-0426-0
摘要

The semiconductor–electrolyte interface dominates the behaviours of semiconductor electrocatalysis, which has been modelled as a Schottky-analogue junction according to classical electron transfer theories. However, this model cannot be used to explain the extremely high carrier accumulations in ultrathin semiconductor catalysis observed in our work. Inspired by the recently developed ion-controlled electronics, we revisit the semiconductor–electrolyte interface and unravel a universal self-gating phenomenon through microcell-based in situ electronic/electrochemical measurements to clarify the electronic-conduction modulation of semiconductors during the electrocatalytic reaction. We then demonstrate that the type of semiconductor catalyst strongly correlates with their electrocatalysis; that is, n-type semiconductor catalysts favour cathodic reactions such as the hydrogen evolution reaction, p-type ones prefer anodic reactions such as the oxygen evolution reaction and bipolar ones tend to perform both anodic and cathodic reactions. Our study provides new insight into the electronic origin of the semiconductor–electrolyte interface during electrocatalysis, paving the way for designing high-performance semiconductor catalysts. The semiconductor–electrolyte interface dominates the behaviour of semiconductor electrocatalysts. Inspired by ion-controlled electronics a universal self-gating phenomenon is now proposed to explain transport modulation during electrocatalytic reaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助Maths采纳,获得10
1秒前
可爱的函函应助snowpaper采纳,获得10
2秒前
乐乐应助柚子采纳,获得10
2秒前
科研通AI2S应助ruiruili采纳,获得10
2秒前
华姝完成签到,获得积分10
3秒前
3秒前
4秒前
北陌完成签到,获得积分10
4秒前
5秒前
今后应助Puokn采纳,获得10
6秒前
小马甲应助Destiny采纳,获得10
6秒前
陌路人完成签到,获得积分10
6秒前
ifanyz完成签到,获得积分10
6秒前
6秒前
7秒前
ming完成签到,获得积分10
7秒前
凉雨渲发布了新的文献求助20
7秒前
GeniusC完成签到,获得积分10
7秒前
7秒前
深情安青应助超喜欢你采纳,获得10
8秒前
8秒前
9秒前
9秒前
10秒前
在水一方应助璀璨采纳,获得10
10秒前
顺利的伊应助Max采纳,获得10
10秒前
bkagyin应助孙宇采纳,获得10
10秒前
M2106完成签到,获得积分10
10秒前
孙皊发布了新的文献求助10
11秒前
加百莉发布了新的文献求助10
11秒前
栀悾发布了新的文献求助10
11秒前
细心白桃发布了新的文献求助10
12秒前
12秒前
哎呦呦完成签到,获得积分20
12秒前
semon发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助传统的凝天采纳,获得10
14秒前
wyjistest发布了新的文献求助10
14秒前
Alvin发布了新的文献求助10
15秒前
xihuanni发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148568
求助须知:如何正确求助?哪些是违规求助? 2799708
关于积分的说明 7836427
捐赠科研通 2457069
什么是DOI,文献DOI怎么找? 1307711
科研通“疑难数据库(出版商)”最低求助积分说明 628247
版权声明 601663