电催化剂
半导体
材料科学
电解质
半导体器件
阳极
纳米技术
电化学
化学
光电子学
电极
物理化学
图层(电子)
作者
Yongmin He,Qiyuan He,Luqing Wang,Chao Zhu,Prafful Golani,Albertus D. Handoko,Xuechao Yu,Caitian Gao,Mengning Ding,Xuewen Wang,Fucai Liu,Qingsheng Zeng,Peng Yu,Shasha Guo,Boris I. Yakobson,Liang Wang,Zhi Wei Seh,Zhuhua Zhang,Minghong Wu,Qi Jie Wang,Hua Zhang,Zheng Liu
出处
期刊:Nature Materials
[Springer Nature]
日期:2019-07-22
卷期号:18 (10): 1098-1104
被引量:198
标识
DOI:10.1038/s41563-019-0426-0
摘要
The semiconductor–electrolyte interface dominates the behaviours of semiconductor electrocatalysis, which has been modelled as a Schottky-analogue junction according to classical electron transfer theories. However, this model cannot be used to explain the extremely high carrier accumulations in ultrathin semiconductor catalysis observed in our work. Inspired by the recently developed ion-controlled electronics, we revisit the semiconductor–electrolyte interface and unravel a universal self-gating phenomenon through microcell-based in situ electronic/electrochemical measurements to clarify the electronic-conduction modulation of semiconductors during the electrocatalytic reaction. We then demonstrate that the type of semiconductor catalyst strongly correlates with their electrocatalysis; that is, n-type semiconductor catalysts favour cathodic reactions such as the hydrogen evolution reaction, p-type ones prefer anodic reactions such as the oxygen evolution reaction and bipolar ones tend to perform both anodic and cathodic reactions. Our study provides new insight into the electronic origin of the semiconductor–electrolyte interface during electrocatalysis, paving the way for designing high-performance semiconductor catalysts. The semiconductor–electrolyte interface dominates the behaviour of semiconductor electrocatalysts. Inspired by ion-controlled electronics a universal self-gating phenomenon is now proposed to explain transport modulation during electrocatalytic reaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI