Inconsistencies on TripAdvisor reviews: A unified index between users and Sentiment Analysis Methods

情绪分析 极性(国际关系) 计算机科学 背景(考古学) 可信赖性 情报检索 自然语言处理 人工智能 数据科学 化学 计算机安全 生物化学 生物 古生物学 细胞
作者
Ana Valdivia,Emiliya Hrabova,Iti Chaturvedi,M. Victoria Luzón,Luigi Troiano,Erik Cambria,Francisco Herrera
出处
期刊:Neurocomputing [Elsevier]
卷期号:353: 3-16 被引量:64
标识
DOI:10.1016/j.neucom.2018.09.096
摘要

TripAdvisor is an opinion source frequently used in Sentiment Analysis. On this social network, users explain their experiences in hotels, restaurants or touristic attractions. They write texts of 200 character minimum and score the overall of their review with a numeric scale that ranks from 1 (Terrible) to 5 (Excellent). In this work, we aim that this score, which we define as the User Polarity, may not be representative of the sentiment of all the sentences that make up the opinion. We analyze opinions from six Italian and Spanish monument reviews and detect that there exist inconsistencies between the User Polarity and Sentiment Analysis Methods that automatically extract polarities. The fact is that users tend to rate their visit positively, but in some cases negative sentences and aspects appear, which are detected by these methods. To address these problems, we propose a Polarity Aggregation Model that takes into account both polarities guided by the geometrical mean. We study its performance by extracting aspects of monuments reviews and assigning to them the aggregated polarities. The advantage is that it matches together the sentiment of the context (User Polarity) and the sentiment extracted by a pre-trained method (SAM Polarity). We also show that this score fixes inconsistencies and it may be applied for discovering trustworthy insights from aspects, considering both general and specific context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容的剑完成签到 ,获得积分10
刚刚
刚刚
刚刚
刚刚
aerjin发布了新的文献求助10
刚刚
乐乐应助马二朵采纳,获得10
1秒前
美好斓发布了新的文献求助30
1秒前
zz发布了新的文献求助10
1秒前
青鱼完成签到,获得积分10
1秒前
香蕉觅云应助入门的橙橙采纳,获得10
2秒前
2秒前
2秒前
每每反完成签到,获得积分10
3秒前
Sunshine完成签到,获得积分10
4秒前
ycc完成签到,获得积分10
4秒前
脑洞疼应助wzwz采纳,获得10
5秒前
5秒前
persi完成签到 ,获得积分10
5秒前
5秒前
6秒前
jack发布了新的文献求助10
7秒前
beibei发布了新的文献求助10
9秒前
10秒前
MHX完成签到,获得积分10
11秒前
神勇的薯片完成签到,获得积分10
11秒前
YZzzJ发布了新的文献求助10
12秒前
大个应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
Jing完成签到,获得积分10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
WWXWWX应助科研通管家采纳,获得10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155375
求助须知:如何正确求助?哪些是违规求助? 2806300
关于积分的说明 7869086
捐赠科研通 2464734
什么是DOI,文献DOI怎么找? 1311923
科研通“疑难数据库(出版商)”最低求助积分说明 629783
版权声明 601880