Comprehensive analysis of tumour initiation, spatial and temporal progression under multiple lines of treatment

克拉斯 生物 癌症的体细胞进化 肺癌 癌症 人口 恶性肿瘤 转移 腺癌 计算生物学 系统发育树 癌症研究 遗传学 基因 肿瘤科 医学 结直肠癌 环境卫生
作者
Ignaty Leshchiner,Dimitri Livitz,Justin F. Gainor,Daniel Rosebrock,Oliver Spiro,Aina Zurita Martinez,Mroz E,Jiachen Lin,Chip Stewart,Jaegil Kim,Liudmila Elagina,Ivana Bozic,Mari Mino-Kenudson,Marguerite Rooney,Sai-Hong Ignatius Ou,Catherine J. Wu,James W. Rocco,J. A. Engelman,Alice T. Shaw,Gad Getz
标识
DOI:10.1101/508127
摘要

Abstract Driver mutations alter cells from normal to cancer through several evolutionary epochs: premalignancy, early malignancy, subclonal diversification, metastasis and resistance to therapy. Later stages of disease can be explored through analyzing multiple samples collected longitudinally, on or between successive treatments, and finally at time of autopsy. It is also possible to study earlier stages of cancer development through probabilistic reconstruction of developmental trajectories based on mutational information preserved in the genome. Here we present a suite of tools, called Phylogic N-Dimensional with Timing (PhylogicNDT), that statistically model phylogenetic and evolutionary trajectories based on mutation and copy-number data representing samples taken at single or multiple time points. PhylogicNDT can be used to infer: (i) the order of clonal driver events (including in pre-cancerous stages); (ii) subclonal populations of cells and their phylogenetic relationships; and (iii) cell population dynamics. We demonstrate the use of PhylogicNDT by applying it to whole-exome and whole-genome data of 498 lung adenocarcinoma samples (434 previously available and 64 of newly generated data). We identify significantly different progression trajectories across subtypes of lung adenocarcinoma ( EGFR mutant, KRAS mutant, fusion-driven and EGFR/KRAS wild type cancers). In addition, we study the progression of fusion-driven lung cancer in 21 patients by analyzing samples from multiple timepoints during treatment with 1st and next generation tyrosine kinase inhibitors. We characterize their subclonal diversification, dynamics, selection, and changes in mutational signatures and neoantigen load. This methodology will enable a systematic study of tumour initiation, progression and resistance across cancer types and therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ding应助zhangjingjing采纳,获得10
3秒前
无花果应助幸福的半梦采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得20
3秒前
劲秉应助科研通管家采纳,获得10
4秒前
mirandaaa应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得20
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得20
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
5秒前
老阳发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
乐观的素阴完成签到,获得积分20
9秒前
10秒前
KKKZ发布了新的文献求助10
10秒前
创不可贴发布了新的文献求助10
12秒前
昼尽夜临完成签到 ,获得积分10
12秒前
12秒前
豆包完成签到,获得积分10
14秒前
16秒前
18秒前
濮阳灵竹发布了新的文献求助10
19秒前
陌雪发布了新的文献求助10
19秒前
Genger完成签到,获得积分10
21秒前
zhugepengju完成签到,获得积分10
22秒前
小鱼干完成签到,获得积分20
26秒前
27秒前
28秒前
大模型应助飞飞鱼采纳,获得10
28秒前
科研通AI5应助小鱼干采纳,获得10
31秒前
32秒前
星辰大海应助老阳采纳,获得10
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738649
求助须知:如何正确求助?哪些是违规求助? 3282012
关于积分的说明 10027267
捐赠科研通 2998753
什么是DOI,文献DOI怎么找? 1645497
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749975