Uniporter公司
线粒体通透性转换孔
线粒体
细胞生物学
生物能学
线粒体内膜
去极化
膜电位
钌红
化学
电压依赖性钙通道
钙
生物
钙信号传导
程序性细胞死亡
生物物理学
生物化学
信号转导
细胞凋亡
胞浆
有机化学
酶
作者
Jonathan P Lambert,Timothy S. Luongo,Pooja Jadiya,Erhe Gao,Xueqian Zhang,Anna Maria Lucchesee,John W. Elrod
标识
DOI:10.1161/res.121.suppl_1.432
摘要
The mitochondrial calcium uniporter (MCU) is a high-capacity, inward-rectifying channel in the inner mitochondrial membrane and is required for mitochondrial Ca 2+ ( m Ca 2+ ) uptake. m Ca 2+ signaling regulates bioenergetics and activates the mitochondrial permeability transition pore (MPTP) which are cellular processes implicated in cardiac pathophysiology warranting further research into the molecular regulation of the MCU. Recently, a MCU gene paralog, MCUB , was identified as a possible component of the channel. To investigate MCUB’s contribution to uniporter regulation we created a MCUB -/- HeLa cell line using CRISPR-Cas9n. Here, we report that loss of MCUB increased m Ca 2+ transient amplitude after IP3R stimulation (52% vs. con) suggesting MCUB negatively regulates m Ca 2+ uptake. Mitoplast patch-clamping confirmed that loss of MCUB increases MCU current density, suggesting MCUb modulates channel capacitance. Permeabilized MCUB -/- and WT cells exposed to various levels of Ca 2+ (0.5-20μM) revealed that MCUB -/- cells exhibited m Ca 2+ uptake at lower Ca 2+ concentrations than controls, suggesting MCUB contributes to channel gating. In m Ca 2+ retention capacity experiments MCUB -/- cells required ~30% less bath Ca 2+ to induce depolarization, suggesting a predisposition to m Ca 2+ overload. Next, we generated a cardiac-specific, tamoxifen-inducible MCUB overexpression mouse model ( MCUB -Tg). Cardiomyocytes isolated from MCUB -Tg hearts exhibited decreased m Ca 2+ uptake at low-Ca 2+ (59% vs. con) and isolated mitochondria exhibited a reduction in Ca 2+ -induced swelling (37% vs. con), suggesting a resistance to permeability transition. MCUB -Tg mice displayed a significant impairment in isoproterenol-induced contractile reserve and this correlated with a loss of isoproterenol-mediated activation of pyruvate dehydrogenase. In summary, our results suggest that MCUB limits m Ca 2+ uptake by altering channel-gating and thereby regulates bioenergetics and MPTP opening.
科研通智能强力驱动
Strongly Powered by AbleSci AI