已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Potential of near infrared spectroscopy and pattern recognition for rapid discrimination and quantification of Gleditsia sinensis thorn powder with adulterants

模式识别(心理学) 规范化(社会学) 人工智能 化学 平滑的 支持向量机 偏最小二乘回归 相关系数 二阶导数 数学 生物系统 统计 计算机科学 数学分析 生物 社会学 人类学
作者
Lijun Wang,Hui Yin,Kun Jiang,Guo Yin,Jue Wang,Yan Yan,Li Wang,Jing Li,Ping Wang,BI Kai-shun,Tiejie Wang
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:160: 64-72 被引量:23
标识
DOI:10.1016/j.jpba.2018.07.036
摘要

The Gleditsia sinensis Lam thorn (GST) is a classical traditional Chinese medical herb, which is of high medical and economic value. GST could be easily adulterated with branch of Rosa multiflora thunb (BRM) and Rosa rugosa thumb (BRR), because of their similar appearances and much lower cost for these adulterants. In this study Fourier transform near-infrared spectroscopy (FT-NIR) combined with chemical pattern recognition techniques was explored for the first time to discriminate and quantify of cheaper materials (BRM and BRR) in GST. The Savitzkye-Golay (SG) smoothing, vector normalization (VN), min max normalization (MMN), first derivative (1 st D) and second derivative (2nd D) methods were used to pre-process the raw FT-NIR spectra. Successive projections algorithm was adopted to select the characteristic variables and linear discriminate analysis (LDA), support vector machine (SVM), as while as back propagation neural network (BPNN) algorithms were applied to construct the identification models. Results showed that BPNN models performance best compared with LDA and SVM models for it could reach 100% accuracy for identifying authentic GST, and GST adulterated with BRM and BRR based on the spectral region of 6500-5500 cm-1 combined with 1 st D pre-processing. In addition, the BRM and BRR content in adulterated GST were determined by partial least squares (PLS) regression. The correlation coefficient of prediction (rp), root mean square error of prediction (RMSEP) and bias for the prediction by PLS regression model were 0.9972, 1.969% and 0.3198 for BRM, 0.9972, 1.879% and 0.05408 for BRR, respectively. These results suggest that the combination of NIR spectroscopy and chemometric methods offers a simple, fast and reliable method for classification and quantification in the quality control of the tradition Chinese medicine herb of GST.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DR_Su完成签到,获得积分10
2秒前
2秒前
我是老大应助nicolesong0614采纳,获得10
3秒前
田様应助康阿蛋采纳,获得10
5秒前
JXY完成签到 ,获得积分10
6秒前
小佛爱学护理学完成签到,获得积分10
6秒前
清风发布了新的文献求助10
8秒前
HMR完成签到 ,获得积分10
9秒前
Alicia完成签到 ,获得积分10
10秒前
zhaojj发布了新的文献求助10
10秒前
11秒前
额123没名完成签到 ,获得积分10
19秒前
天下无敌完成签到 ,获得积分10
19秒前
yihui1113完成签到 ,获得积分10
20秒前
安生完成签到,获得积分10
26秒前
marco完成签到 ,获得积分10
27秒前
火火完成签到,获得积分10
27秒前
尼可刹米洛贝林完成签到,获得积分10
27秒前
28秒前
小白完成签到 ,获得积分10
29秒前
严珍珍完成签到 ,获得积分10
29秒前
英俊的铭应助123采纳,获得10
30秒前
CipherSage应助123采纳,获得10
32秒前
陈醋塔塔完成签到,获得积分10
34秒前
共享精神应助nicolesong0614采纳,获得10
35秒前
诸葛朝雪完成签到,获得积分10
36秒前
小马甲应助zhaojj采纳,获得10
36秒前
沉静一刀完成签到 ,获得积分10
37秒前
YY发布了新的文献求助10
37秒前
38秒前
40秒前
41秒前
炸鸡完成签到 ,获得积分10
41秒前
胡须完成签到,获得积分10
44秒前
44秒前
yrea完成签到,获得积分10
45秒前
123发布了新的文献求助10
46秒前
46秒前
47秒前
47秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162173
求助须知:如何正确求助?哪些是违规求助? 2813256
关于积分的说明 7899394
捐赠科研通 2472477
什么是DOI,文献DOI怎么找? 1316444
科研通“疑难数据库(出版商)”最低求助积分说明 631317
版权声明 602142