The influence of anisotropic surface stresses and bulk stresses on defect thermodynamics in LiCoO2 nanoparticles

材料科学 各向异性 复合材料 纳米颗粒
作者
Peter Stein,Ashkan Moradabadi,P. Manuel Diehm,Bai-Xiang Xu,Karsten Albe
出处
期刊:Acta Materialia [Elsevier]
卷期号:159: 225-240 被引量:17
标识
DOI:10.1016/j.actamat.2018.07.046
摘要

Abstract The demand for higher specific capacity and rate capability has led to the adoption of nanostructured electrodes for lithium-ion batteries. At these length scales, surface effects gain an appreciable impact not only on the electrochemical and mechanical behavior of the electrode material, but also on defect thermodynamics. The focus of this study is the distribution of surface-induced bulk stresses in a LiCoO 2 nanoparticle and their impact on the migration of Livacancies. LiCoO 2 is a prototypical cathode material, where the diffusion of Li is mediated by the vacancy mechanism. For this investigation, elastic parameters and anisotropic surface stress components are computed using Density Functional Theory calculations. They are incorporated into a surface-enhanced continuum model, implemented by means of the Finite Element method. The particle geometry is derived from a Wulff construction, and changes in the formation energy and migration barriers of a Li vacancy are determined using the defect dipole tensor concept. Within the considered nanoparticle, the surface stresses result in a highly heterogeneous bulk stress distribution with a vortex-like transition region between the tensile particle core and its non-uniformly stressed boundaries. Both the center and the exterior of the particle show enhanced formation energy and migration barriers for of a Li vacancy. These experience a reduction in the transition region in the particle, culminating in a peak increase in vacancy diffusivity and ionic conductivity by circa 10% each. For a particle at a length-scale of 10 nm , this yields an overall increase in ionic conductivity by a mere 0.8%. This surface stress-enhanced conductivity decays rapidly with increasing particle size.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gpy应助呵呵呵呵采纳,获得10
刚刚
科研完成签到,获得积分10
1秒前
科研通AI2S应助飞快的尔蓝采纳,获得10
1秒前
斯文败类应助飞快的尔蓝采纳,获得10
1秒前
2秒前
一一应助稳重的蛟凤采纳,获得20
2秒前
xiaole完成签到,获得积分10
3秒前
6666666666发布了新的文献求助20
3秒前
3秒前
DWDD发布了新的文献求助10
3秒前
成龙王发布了新的文献求助10
4秒前
BowieHuang应助颖颖采纳,获得10
4秒前
科研通AI6.1应助jingle采纳,获得10
4秒前
4秒前
5秒前
sswbzh给好运偏爱的那个男的的求助进行了留言
5秒前
5秒前
5秒前
6秒前
7秒前
7秒前
坚定的雁完成签到 ,获得积分10
7秒前
7秒前
Sun1c7发布了新的文献求助10
7秒前
8秒前
8秒前
邢丹丹发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
勤恳的鹰发布了新的文献求助10
11秒前
小丸子发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
不安乐曲发布了新的文献求助10
12秒前
BowieHuang应助啵啵采纳,获得10
12秒前
13秒前
CodeCraft应助千里采纳,获得10
13秒前
13秒前
wangxuejiao发布了新的文献求助10
13秒前
孔雀东南风完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933