The influence of anisotropic surface stresses and bulk stresses on defect thermodynamics in LiCoO2 nanoparticles

材料科学 各向异性 复合材料 纳米颗粒
作者
Peter Stein,Ashkan Moradabadi,P. Manuel Diehm,Bai-Xiang Xu,Karsten Albe
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:159: 225-240 被引量:17
标识
DOI:10.1016/j.actamat.2018.07.046
摘要

Abstract The demand for higher specific capacity and rate capability has led to the adoption of nanostructured electrodes for lithium-ion batteries. At these length scales, surface effects gain an appreciable impact not only on the electrochemical and mechanical behavior of the electrode material, but also on defect thermodynamics. The focus of this study is the distribution of surface-induced bulk stresses in a LiCoO 2 nanoparticle and their impact on the migration of Livacancies. LiCoO 2 is a prototypical cathode material, where the diffusion of Li is mediated by the vacancy mechanism. For this investigation, elastic parameters and anisotropic surface stress components are computed using Density Functional Theory calculations. They are incorporated into a surface-enhanced continuum model, implemented by means of the Finite Element method. The particle geometry is derived from a Wulff construction, and changes in the formation energy and migration barriers of a Li vacancy are determined using the defect dipole tensor concept. Within the considered nanoparticle, the surface stresses result in a highly heterogeneous bulk stress distribution with a vortex-like transition region between the tensile particle core and its non-uniformly stressed boundaries. Both the center and the exterior of the particle show enhanced formation energy and migration barriers for of a Li vacancy. These experience a reduction in the transition region in the particle, culminating in a peak increase in vacancy diffusivity and ionic conductivity by circa 10% each. For a particle at a length-scale of 10 nm , this yields an overall increase in ionic conductivity by a mere 0.8%. This surface stress-enhanced conductivity decays rapidly with increasing particle size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助feeuoo采纳,获得10
刚刚
爆米花应助雷培采纳,获得10
刚刚
LYB吕完成签到,获得积分10
刚刚
我是老大应助Solarenergy采纳,获得10
1秒前
T拐拐发布了新的文献求助10
2秒前
4秒前
6秒前
6秒前
8秒前
zombie发布了新的文献求助10
9秒前
10秒前
10秒前
黄青青完成签到,获得积分10
11秒前
11秒前
12秒前
zzz完成签到,获得积分10
12秒前
崔洪瑞完成签到,获得积分10
13秒前
斯文败类应助温智鹏采纳,获得30
14秒前
Mr.Su完成签到 ,获得积分10
14秒前
逍遥完成签到,获得积分10
14秒前
七个丸子发布了新的文献求助30
14秒前
Ming完成签到,获得积分10
15秒前
feeuoo发布了新的文献求助10
16秒前
zombie完成签到,获得积分10
17秒前
zh完成签到 ,获得积分10
17秒前
ycc完成签到,获得积分10
19秒前
adam完成签到,获得积分20
19秒前
21秒前
活力的秋荷完成签到,获得积分10
21秒前
科研通AI2S应助fengzi151采纳,获得10
21秒前
yx_cheng应助猪头采纳,获得50
22秒前
lisier完成签到,获得积分10
23秒前
Doctor-Bu发布了新的文献求助10
23秒前
FoxLY完成签到,获得积分10
24秒前
adam发布了新的文献求助10
25秒前
25秒前
可爱的函函应助咯咚采纳,获得10
26秒前
kmy完成签到 ,获得积分10
26秒前
27秒前
小马甲应助阿波罗采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997611
求助须知:如何正确求助?哪些是违规求助? 3537154
关于积分的说明 11270819
捐赠科研通 3276323
什么是DOI,文献DOI怎么找? 1806885
邀请新用户注册赠送积分活动 883576
科研通“疑难数据库(出版商)”最低求助积分说明 809975