The influence of anisotropic surface stresses and bulk stresses on defect thermodynamics in LiCoO2 nanoparticles

材料科学 各向异性 复合材料 纳米颗粒
作者
Peter Stein,Ashkan Moradabadi,P. Manuel Diehm,Bai-Xiang Xu,Karsten Albe
出处
期刊:Acta Materialia [Elsevier]
卷期号:159: 225-240 被引量:17
标识
DOI:10.1016/j.actamat.2018.07.046
摘要

Abstract The demand for higher specific capacity and rate capability has led to the adoption of nanostructured electrodes for lithium-ion batteries. At these length scales, surface effects gain an appreciable impact not only on the electrochemical and mechanical behavior of the electrode material, but also on defect thermodynamics. The focus of this study is the distribution of surface-induced bulk stresses in a LiCoO 2 nanoparticle and their impact on the migration of Livacancies. LiCoO 2 is a prototypical cathode material, where the diffusion of Li is mediated by the vacancy mechanism. For this investigation, elastic parameters and anisotropic surface stress components are computed using Density Functional Theory calculations. They are incorporated into a surface-enhanced continuum model, implemented by means of the Finite Element method. The particle geometry is derived from a Wulff construction, and changes in the formation energy and migration barriers of a Li vacancy are determined using the defect dipole tensor concept. Within the considered nanoparticle, the surface stresses result in a highly heterogeneous bulk stress distribution with a vortex-like transition region between the tensile particle core and its non-uniformly stressed boundaries. Both the center and the exterior of the particle show enhanced formation energy and migration barriers for of a Li vacancy. These experience a reduction in the transition region in the particle, culminating in a peak increase in vacancy diffusivity and ionic conductivity by circa 10% each. For a particle at a length-scale of 10 nm , this yields an overall increase in ionic conductivity by a mere 0.8%. This surface stress-enhanced conductivity decays rapidly with increasing particle size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tourist585完成签到,获得积分10
1秒前
1秒前
Yoyo发布了新的文献求助10
1秒前
NexusExplorer应助xzq采纳,获得10
3秒前
Lucas应助红心柚采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
科研通AI2S应助完美的海秋采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
所所应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
杨雪妮发布了新的文献求助10
5秒前
保护野菠萝完成签到,获得积分10
5秒前
Soap发布了新的文献求助10
5秒前
司空丹秋发布了新的文献求助10
6秒前
nihao发布了新的文献求助10
7秒前
tjyiia发布了新的文献求助10
9秒前
传奇3应助靳佩采纳,获得10
10秒前
李白发布了新的文献求助10
10秒前
CipherSage应助狂野芷卉采纳,获得10
10秒前
11秒前
wanci应助JiaY采纳,获得10
12秒前
12秒前
科目三应助司空丹秋采纳,获得10
14秒前
77完成签到,获得积分10
15秒前
李爱国应助Yoyo采纳,获得10
16秒前
易寒完成签到,获得积分10
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241521
求助须知:如何正确求助?哪些是违规求助? 2885957
关于积分的说明 8241200
捐赠科研通 2554486
什么是DOI,文献DOI怎么找? 1382615
科研通“疑难数据库(出版商)”最低求助积分说明 649608
邀请新用户注册赠送积分活动 625279