The influence of anisotropic surface stresses and bulk stresses on defect thermodynamics in LiCoO2 nanoparticles

材料科学 各向异性 复合材料 纳米颗粒
作者
Peter Stein,Ashkan Moradabadi,P. Manuel Diehm,Bai-Xiang Xu,Karsten Albe
出处
期刊:Acta Materialia [Elsevier]
卷期号:159: 225-240 被引量:17
标识
DOI:10.1016/j.actamat.2018.07.046
摘要

Abstract The demand for higher specific capacity and rate capability has led to the adoption of nanostructured electrodes for lithium-ion batteries. At these length scales, surface effects gain an appreciable impact not only on the electrochemical and mechanical behavior of the electrode material, but also on defect thermodynamics. The focus of this study is the distribution of surface-induced bulk stresses in a LiCoO 2 nanoparticle and their impact on the migration of Livacancies. LiCoO 2 is a prototypical cathode material, where the diffusion of Li is mediated by the vacancy mechanism. For this investigation, elastic parameters and anisotropic surface stress components are computed using Density Functional Theory calculations. They are incorporated into a surface-enhanced continuum model, implemented by means of the Finite Element method. The particle geometry is derived from a Wulff construction, and changes in the formation energy and migration barriers of a Li vacancy are determined using the defect dipole tensor concept. Within the considered nanoparticle, the surface stresses result in a highly heterogeneous bulk stress distribution with a vortex-like transition region between the tensile particle core and its non-uniformly stressed boundaries. Both the center and the exterior of the particle show enhanced formation energy and migration barriers for of a Li vacancy. These experience a reduction in the transition region in the particle, culminating in a peak increase in vacancy diffusivity and ionic conductivity by circa 10% each. For a particle at a length-scale of 10 nm , this yields an overall increase in ionic conductivity by a mere 0.8%. This surface stress-enhanced conductivity decays rapidly with increasing particle size.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
平常的三问完成签到 ,获得积分10
3秒前
6秒前
夜未央完成签到 ,获得积分10
6秒前
DZS完成签到 ,获得积分10
22秒前
wml发布了新的文献求助10
22秒前
七厘米发布了新的文献求助10
22秒前
506407完成签到,获得积分10
24秒前
土拨鼠完成签到 ,获得积分0
25秒前
liukanhai完成签到,获得积分10
28秒前
豆⑧完成签到,获得积分10
32秒前
不劳而获完成签到 ,获得积分10
37秒前
JUN完成签到,获得积分10
38秒前
shacodow完成签到,获得积分10
39秒前
ll完成签到,获得积分10
41秒前
瞿人雄完成签到,获得积分10
42秒前
龙弟弟完成签到 ,获得积分10
43秒前
没心没肺完成签到,获得积分10
44秒前
学术霸王完成签到,获得积分10
45秒前
1002SHIB完成签到,获得积分10
46秒前
nihaolaojiu完成签到,获得积分10
46秒前
sheetung完成签到,获得积分10
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
1分钟前
路漫漫其修远兮完成签到 ,获得积分10
1分钟前
月下荷花完成签到 ,获得积分10
1分钟前
小山己几完成签到,获得积分10
1分钟前
李音完成签到 ,获得积分10
1分钟前
七厘米发布了新的文献求助10
1分钟前
哥哥发布了新的文献求助10
1分钟前
周周南完成签到 ,获得积分10
1分钟前
1分钟前
Brenda完成签到,获得积分10
1分钟前
光亮若翠完成签到,获得积分10
2分钟前
忧虑的静柏完成签到 ,获得积分10
2分钟前
颜小喵完成签到 ,获得积分10
2分钟前
悦耳的城完成签到 ,获得积分10
2分钟前
七厘米完成签到,获得积分10
2分钟前
单纯无声完成签到 ,获得积分10
2分钟前
平凡世界完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715346
求助须知:如何正确求助?哪些是违规求助? 5233652
关于积分的说明 15274288
捐赠科研通 4866240
什么是DOI,文献DOI怎么找? 2612837
邀请新用户注册赠送积分活动 1562989
关于科研通互助平台的介绍 1520370