In Situ Synthesis of MIL-100(Fe) in the Capillary Column for Capillary Electrochromatographic Separation of Small Organic Molecules

毛细管电色谱 化学 毛细管作用 涂层 选择性 色谱法 分析物 分析化学(期刊) 毛细管电泳 材料科学 有机化学 复合材料 催化作用
作者
Yinyin Xu,Laifang Xu,Shengda Qi,Yalei Dong,Zia Ur Rahman,Hongli Chen,Xingguo Chen
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:85 (23): 11369-11375 被引量:69
标识
DOI:10.1021/ac402254u
摘要

Because of the unusual properties of the structure, the metal organic frameworks (MOFs) have received great interest in separation science. However, the most existing methods for the applications of MOFs in separation science require an off-line procedure to prepare the materials. Here, we report an in situ, layer-by-layer self-assembly approach to fabricate MIL-100(Fe) coated open tubular (OT) capillary columns for capillary electrochromatography. By a controllable manner, the OT capillary columns with a tailored MIL-100(Fe) coating have been successfully synthesized. The results of SEM, XRD, FT-IR, and ICP-AES indicated that MIL-100(Fe) was successfully grafted on the inner wall of the capillary. Some neutral, acidic and basic analytes were used to evaluate the performance of the MIL-100(Fe) coating OT capillary column. Because of the size selectivity of lattice aperture and hydrophobicity of the organic ligands, three types of analytes were well separated with this novel MIL-100(Fe) coating OT capillary column. For three consecutive runs, the intraday relative standard deviations (RSDs) of migration time and peak areas were 0.4-4.6% and 1.2-6.6%, respectively. The interday RSDs of migration time and peak areas were 0.6-8.0% and 2.2-9.5%, respectively. The column-to-column reproducibility of retention time was in range of 0.6-9.2%. Additionally, the 10 cycles OT capillary column (10-LC) could be used for more than 150 runs with no observable changes on the separation efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动人的老黑完成签到 ,获得积分10
刚刚
星星泡饭发布了新的文献求助10
刚刚
1秒前
Silence完成签到,获得积分10
1秒前
yan儿发布了新的文献求助10
2秒前
pearl完成签到,获得积分10
3秒前
hahah发布了新的文献求助10
3秒前
请叫我风吹麦浪应助胖豆采纳,获得10
3秒前
无花果应助幸福胡萝卜采纳,获得10
3秒前
4秒前
卡卡发布了新的文献求助10
4秒前
wanci应助风趣的天真采纳,获得10
4秒前
Silence发布了新的文献求助10
4秒前
清爽老九发布了新的文献求助100
4秒前
5秒前
衔尾蛇发布了新的文献求助10
5秒前
小蔡会有猫的完成签到,获得积分10
5秒前
zhai发布了新的文献求助10
5秒前
5秒前
5秒前
村上春树的摩的完成签到 ,获得积分10
5秒前
5秒前
脑洞疼应助JACK采纳,获得10
6秒前
zhouyunan完成签到,获得积分10
6秒前
昵称发布了新的文献求助10
6秒前
6秒前
6秒前
馥日祎完成签到,获得积分10
6秒前
Ava应助Rui采纳,获得10
7秒前
coolkid完成签到 ,获得积分10
7秒前
贼拉瘦的美神完成签到,获得积分10
8秒前
tsy完成签到 ,获得积分10
9秒前
April发布了新的文献求助20
9秒前
10秒前
今后应助不安豁采纳,获得10
11秒前
huifang发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
67发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762