材料科学
纹理(宇宙学)
扫描电子显微镜
选择性激光熔化
微观结构
钽
各向异性
产量(工程)
复合材料
电子背散射衍射
定向凝固
结晶学
光学
冶金
图像(数学)
物理
化学
人工智能
计算机科学
作者
Lore Thijs,Maria L. Montero-Sistiaga,Ruben Wauthlé,Qingge Xie,Jean‐Pierre Kruth,Jan Van Humbeeck
出处
期刊:Acta Materialia
[Elsevier]
日期:2013-05-09
卷期号:61 (12): 4657-4668
被引量:560
标识
DOI:10.1016/j.actamat.2013.04.036
摘要
Selective laser melting (SLM) makes use of a high energy density laser beam to melt successive layers of metallic powders in order to create functional parts. The energy density of the laser is high enough to melt refractory metals like Ta and produce mechanically sound parts. Furthermore, the localized heat input causes a strong directional cooling and solidification. Epitaxial growth due to partial remelting of the previous layer, competitive growth mechanism and a specific global direction of heat flow during SLM of Ta result in the formation of long columnar grains with a 〈1 1 1〉 preferential crystal orientation along the building direction. The microstructure was visualized using both optical and scanning electron microscopy equipped with electron backscattered diffraction and the global crystallographic texture was measured using X-ray diffraction. The thermal profile around the melt pool was modeled using a pragmatic model for SLM. Furthermore, rotation of the scanning direction between different layers was seen to promote the competitive growth. As a result, the texture strength increased to as large as 4.7 for rotating the scanning direction 90° every layer. By comparison of the yield strength measured by compression tests in different orientations and the averaged Taylor factor calculated using the viscoplastic self-consistent model, it was found that both the morphological and crystallographic texture observed in SLM Ta contribute to yield strength anisotropy.
科研通智能强力驱动
Strongly Powered by AbleSci AI