Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes?

分位数 降水 环境科学 气候学 缩小尺度 计量经济学 气候模式 极值理论 耦合模型比对项目 气候变化 统计 气象学 数学 地质学 地理 海洋学
作者
Alex J. Cannon,S. R. Sobie,Trevor Q. Murdock
出处
期刊:Journal of Climate [American Meteorological Society]
卷期号:28 (17): 6938-6959 被引量:1022
标识
DOI:10.1175/jcli-d-14-00754.1
摘要

Abstract Quantile mapping bias correction algorithms are commonly used to correct systematic distributional biases in precipitation outputs from climate models. Although they are effective at removing historical biases relative to observations, it has been found that quantile mapping can artificially corrupt future model-projected trends. Previous studies on the modification of precipitation trends by quantile mapping have focused on mean quantities, with less attention paid to extremes. This article investigates the extent to which quantile mapping algorithms modify global climate model (GCM) trends in mean precipitation and precipitation extremes indices. First, a bias correction algorithm, quantile delta mapping (QDM), that explicitly preserves relative changes in precipitation quantiles is presented. QDM is compared on synthetic data with detrended quantile mapping (DQM), which is designed to preserve trends in the mean, and with standard quantile mapping (QM). Next, methods are applied to phase 5 of the Coupled Model Intercomparison Project (CMIP5) daily precipitation projections over Canada. Performance is assessed based on precipitation extremes indices and results from a generalized extreme value analysis applied to annual precipitation maxima. QM can inflate the magnitude of relative trends in precipitation extremes with respect to the raw GCM, often substantially, as compared to DQM and especially QDM. The degree of corruption in the GCM trends by QM is particularly large for changes in long period return values. By the 2080s, relative changes in excess of +500% with respect to historical conditions are noted at some locations for 20-yr return values, with maximum changes by DQM and QDM nearing +240% and +140%, respectively, whereas raw GCM changes are never projected to exceed +120%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
NexusExplorer应助水123采纳,获得10
1秒前
110o发布了新的文献求助10
2秒前
合欢发布了新的文献求助10
3秒前
forever完成签到,获得积分10
4秒前
褚子静发布了新的文献求助10
4秒前
嘿嘿发布了新的文献求助10
4秒前
12完成签到,获得积分10
4秒前
大个应助舒服的又菱采纳,获得10
4秒前
5秒前
xu给xu的求助进行了留言
5秒前
番茄大王开心心完成签到,获得积分10
5秒前
6秒前
forever发布了新的文献求助10
6秒前
6秒前
xiaos完成签到,获得积分10
7秒前
8秒前
希望天下0贩的0应助李123采纳,获得10
8秒前
深情安青应助李秉烛采纳,获得10
11秒前
平淡的懿轩完成签到,获得积分10
11秒前
11秒前
yu完成签到,获得积分10
11秒前
Gabriel发布了新的文献求助10
11秒前
夏晴晴完成签到,获得积分10
13秒前
wrf发布了新的文献求助10
13秒前
13秒前
华仔应助优美的丹烟采纳,获得10
14秒前
14秒前
fengge完成签到,获得积分10
14秒前
我是老大应助初七123采纳,获得10
15秒前
陈陈发布了新的文献求助10
15秒前
ZSS_ism完成签到,获得积分10
16秒前
tyx完成签到,获得积分10
17秒前
跑快点发布了新的文献求助10
17秒前
17秒前
18秒前
土人完成签到,获得积分10
20秒前
caijie发布了新的文献求助10
20秒前
21秒前
李健应助陈陈采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601299
求助须知:如何正确求助?哪些是违规求助? 4686815
关于积分的说明 14846229
捐赠科研通 4680459
什么是DOI,文献DOI怎么找? 2539291
邀请新用户注册赠送积分活动 1506167
关于科研通互助平台的介绍 1471283