环境科学
城市化
土地覆盖
生物量(生态学)
天蓬
植被(病理学)
陆地生态系统
生态系统
人口
碳储量
自然地理学
土地利用
地理
林业
农林复合经营
生态学
气候变化
生物
病理
社会学
人口学
医学
作者
Lucy R. Hutyra,Byunghoon Yoon,Marina Alberti
标识
DOI:10.1111/j.1365-2486.2010.02238.x
摘要
Abstract Most of our global population and its CO 2 emissions can be attributed to urban areas. The process of urbanization changes terrestrial carbon stocks and fluxes, which, in turn, impact ecosystem functions and atmospheric CO 2 concentrations. Using the Seattle, WA, region as a case study, this paper explores the relationships between aboveground carbon stocks and land cover within an urbanizing area. The major objectives were to estimate aboveground live and dead terrestrial carbon stocks across multiple land cover classes and quantify the relationships between urban cover and vegetation across a gradient of urbanization. We established 154 sample plots in the Seattle region to assess carbon stocks as a function of distance from the urban core and land cover [urban (heavy, medium, and low), mixed forest, and conifer forest land covers]. The mean (and 95% CI) aboveground live biomass for the region was 89±22 Mg C ha −1 with an additional 11.8±4 Mg C ha −1 of coarse woody debris biomass. The average live biomass stored within forested and urban land covers was 140±40 and 18±14 Mg C ha −1 , respectively, with a 57% mean vegetated canopy cover regionally. Both the total carbon stocks and mean vegetated canopy cover were surprisingly high, even within the heavily urbanized areas, well exceeding observations within other urbanizing areas and the average US forested carbon stocks. As urban land covers and populations continue to rapidly increase across the globe, these results highlight the importance of considering vegetation in urbanizing areas within the terrestrial carbon cycle.
科研通智能强力驱动
Strongly Powered by AbleSci AI