LBM–DEM modeling of fluid–solid interaction in porous media

介观物理学 格子Boltzmann方法 机械 多孔介质 流体力学 离散元法 流体静力平衡 材料科学 多孔性 岩土工程 孔力学 物理 地质学 量子力学
作者
Yanhui Han,Peter Cundall
出处
期刊:International Journal for Numerical and Analytical Methods in Geomechanics [Wiley]
卷期号:37 (10): 1391-1407 被引量:167
标识
DOI:10.1002/nag.2096
摘要

SUMMARY Three porous media flow problems, in which the fluid mechanical interactions are critical, are studied in a mesoscopic–microscopic coupling system. In this system, fluid flow in the pore space is explicitly modeled at mesoscopic level by the lattice Boltzmann method, the geometrical representation and the mechanical behavior of the solid skeleton are modeled at microscopic level by the particulate distinct element method (DEM), and the interfacial interaction between the fluid and the solids is resolved by an immersed boundary scheme. In the first benchmark problem, the well‐known and frequently utilized Ergun equation is validated in periodic particle and periodic pore models. In the second problem, the upward seepage problem is simulated over three stages: The settlement of the column of sphere under gravity loading is measured to illustrate the accuracy of the DEM scheme; the system is solved to hydrostatic state with pore space filled with fluid, showing that the buoyancy effect is captured correctly in the mesoscopic–microscopic coupling system; then, the flow with constant rate is supplied at the bottom of the column; the swelling of the ground surface and pore pressure development from the numerical simulation are compared with the predictions of the macroscopic consolidation theory. In the third problem, the fluid‐flow‐induced collapse of a sand arch inside a perforation cavity is tested to illustrate a more practical application of the developed system. Through comparing simulation results with analytical solutions, empirical law and physical laboratory observations, it is demonstrated that the developed lattice Boltzmann–distinct element coupling system is a powerful fundamental research tool for investigating hydromechanical physics in porous media flow. Copyright © 2012 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北方集群完成签到,获得积分10
刚刚
FashionBoy应助仚屳采纳,获得10
1秒前
思源应助含蓄清炎采纳,获得10
2秒前
liziqqq完成签到,获得积分10
2秒前
3秒前
烟花应助现代秦始皇采纳,获得10
4秒前
boltos发布了新的文献求助10
6秒前
晨晨学长发布了新的文献求助10
6秒前
无花果应助如意翡翠采纳,获得10
7秒前
7秒前
pp1230发布了新的文献求助10
7秒前
芒果椰奶冻完成签到,获得积分10
8秒前
8秒前
大昕完成签到,获得积分10
8秒前
8秒前
10秒前
蝉一个夏天完成签到,获得积分10
10秒前
gao完成签到 ,获得积分20
11秒前
田様应助VDC采纳,获得10
11秒前
11秒前
大昕发布了新的文献求助10
12秒前
12秒前
61489486发布了新的文献求助10
12秒前
13秒前
科研小白完成签到,获得积分10
14秒前
归尘发布了新的文献求助10
15秒前
知来者发布了新的文献求助10
15秒前
如意翡翠发布了新的文献求助10
16秒前
16秒前
结实涑发布了新的文献求助10
17秒前
17秒前
18秒前
无花果应助Eve采纳,获得10
18秒前
18秒前
叶长亭完成签到,获得积分10
19秒前
20秒前
体面人完成签到,获得积分10
21秒前
空谷新苗完成签到,获得积分10
21秒前
光亮的擎完成签到,获得积分20
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542916
求助须知:如何正确求助?哪些是违规求助? 3120308
关于积分的说明 9342102
捐赠科研通 2818290
什么是DOI,文献DOI怎么找? 1549524
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978