Change in winter snow depth and its impacts on vegetation in China

归一化差异植被指数 植被(病理学) 冻土带 环境科学 自然地理学 生态系统 温带气候 降水 气候变化 气候学 灌木丛 地理 生态学 地质学 生物 医学 病理 气象学
作者
Shushi Peng,Shilong Piao,Philippe Ciais,Jingyun Fang,Xuhui Wang
出处
期刊:Global Change Biology [Wiley]
卷期号:16 (11): 3004-3013 被引量:188
标识
DOI:10.1111/j.1365-2486.2010.02210.x
摘要

Abstract Snow on land is an important component of the global climate system, but our knowledge about the effects of its changes on vegetation are limited, particularly in temperate regions. In this study, we use daily snow depth data from 279 meteorological stations across China to investigate the distribution of winter snow depth (December–February) from 1980 to 2005 and its impact on vegetation growth, here approximated by satellite‐derived vegetation greenness index observations [Normalized Difference Vegetation Index (NDVI)]. The snow depth trends show strong geographical heterogeneities. An increasing trend (>0.01 cm yr −1 ) in maximum and mean winter snow depth is found north of 40°N (e.g. Northeast China, Inner Mongolia, and Northwest China). A declining trend (<−0.01 cm yr −1 ) is observed south of 40°N, particularly over Central and East China. The effect of changes in snow depth on vegetation growth was examined for several ecosystem types. In deserts, mean winter snow depth is significantly and positively correlated with NDVI during both early (May and June) and mid‐growing seasons (July and August), suggesting that winter snow plays a critical role in regulating desert vegetation growth, most likely through persistent effects on soil moisture. In grasslands, there is also a significant positive correlation between winter snow depth and NDVI in the period May–June. However, in forests, shrublands, and alpine meadow and tundra, no such correlation is found. These ecosystem‐specific responses of vegetation growth to winter snow depth may be due to differences in growing environmental conditions such as temperature and rainfall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳慕蕊发布了新的文献求助10
1秒前
1秒前
kxy完成签到,获得积分10
4秒前
4秒前
婧婧完成签到 ,获得积分10
4秒前
5秒前
6秒前
左友铭完成签到 ,获得积分10
6秒前
sweetbearm应助通~采纳,获得10
6秒前
AKLIZE完成签到,获得积分10
6秒前
刘大妮完成签到,获得积分10
7秒前
clean完成签到,获得积分20
8秒前
Lucas发布了新的文献求助10
8秒前
8秒前
朴实以松发布了新的文献求助10
8秒前
感谢橘子转发科研通微信,获得积分50
8秒前
围炉煮茶完成签到,获得积分10
9秒前
9秒前
云锋发布了新的文献求助10
10秒前
兴奋的问旋应助务实盼海采纳,获得10
10秒前
李秋静发布了新的文献求助10
10秒前
10秒前
无花果应助cookie采纳,获得10
11秒前
11秒前
斯文败类应助阳尧采纳,获得10
11秒前
12秒前
12秒前
abjz完成签到,获得积分10
12秒前
三千弱水为君饮完成签到,获得积分10
13秒前
13秒前
cata完成签到,获得积分10
13秒前
感谢79转发科研通微信,获得积分50
13秒前
13秒前
troubadourelf发布了新的文献求助10
14秒前
frank发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
感谢超帅冬易转发科研通微信,获得积分50
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794