Trajectory Similarity Based Prediction for Remaining Useful Life Estimation

相似性(几何) 弹道 背景(考古学) 计算机科学 断层(地质) 数据挖掘 降级(电信) 过程(计算) 估计 人工智能 工程类 古生物学 电信 物理 系统工程 天文 地震学 图像(数学) 生物 地质学 操作系统
作者
Tianyi Wang
摘要

Trajectory Similarity Based Prediction for Remaining Useful Life Estimation (126 pp.) The degradation process of a complex system may be affected by many unknown factors, such as unidentified fault modes, unmeasured operational conditions, engineering variance, environmental conditions, etc. These unknown factors not only complicate the degradation behaviors of the system, but also lower the quality of the collected data for modeling. Due to lack of knowledge and incomplete measurements, certain important context information (e.g. fault modes, operational conditions) of the collected data will be missing. Therefore historical data of the system with a large variety of degradation patterns will be mixed together. With such data, learning a global model for Remaining Useful Life (RUL) prediction becomes extremely hard. This has led us to look for advanced RUL prediction techniques beyond the traditional global models. In this thesis, a novel RUL prediction method inspired by the Instance Based Learning methodology, called Trajectory Similarity Based Prediction (TSBP), is proposed. In TSBP, the historical instances of a system with life-time condition data and known failure time are used to create a library of degradation models. For a test instance of the same system whose RUL is to be estimated, similarity between it and each of the degradation models is evaluated by computing the minimal weighted Euclidean distance defined on two degradation trajectories. Based on the known failure time, each of the degradation models will produce one RUL estimate for the test instance. The final RUL estimate can then be obtained by aggregating the multiple RUL estimates using a density estimation method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nesire发布了新的文献求助10
1秒前
吴向宽完成签到,获得积分10
1秒前
1秒前
和谐的芷天完成签到,获得积分10
1秒前
1秒前
1秒前
可乐完成签到,获得积分10
1秒前
kk完成签到 ,获得积分10
2秒前
2秒前
2秒前
洁净雅容完成签到,获得积分10
3秒前
Elena发布了新的文献求助10
3秒前
3秒前
3秒前
不羁的红枫叶完成签到 ,获得积分10
4秒前
是述不是沭完成签到,获得积分10
4秒前
1111发布了新的文献求助10
4秒前
自由若剑完成签到,获得积分10
4秒前
4秒前
MG完成签到,获得积分10
4秒前
树叶有专攻完成签到,获得积分10
4秒前
4秒前
5秒前
able发布了新的文献求助10
5秒前
Ashley完成签到,获得积分10
5秒前
6秒前
7秒前
eternity136完成签到,获得积分10
7秒前
7秒前
Hello应助榴榴采纳,获得20
7秒前
杨振发布了新的文献求助10
8秒前
杰杰发布了新的文献求助10
8秒前
落叶完成签到 ,获得积分10
8秒前
9秒前
9秒前
天天下文献完成签到 ,获得积分10
9秒前
9秒前
酷炫翠桃应助卫海亦采纳,获得10
9秒前
9秒前
一锅炖不下完成签到 ,获得积分10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582