Trajectory Similarity Based Prediction for Remaining Useful Life Estimation

相似性(几何) 弹道 背景(考古学) 计算机科学 断层(地质) 数据挖掘 降级(电信) 过程(计算) 估计 人工智能 工程类 古生物学 电信 物理 系统工程 天文 地震学 图像(数学) 生物 地质学 操作系统
作者
Tianyi Wang
摘要

Trajectory Similarity Based Prediction for Remaining Useful Life Estimation (126 pp.) The degradation process of a complex system may be affected by many unknown factors, such as unidentified fault modes, unmeasured operational conditions, engineering variance, environmental conditions, etc. These unknown factors not only complicate the degradation behaviors of the system, but also lower the quality of the collected data for modeling. Due to lack of knowledge and incomplete measurements, certain important context information (e.g. fault modes, operational conditions) of the collected data will be missing. Therefore historical data of the system with a large variety of degradation patterns will be mixed together. With such data, learning a global model for Remaining Useful Life (RUL) prediction becomes extremely hard. This has led us to look for advanced RUL prediction techniques beyond the traditional global models. In this thesis, a novel RUL prediction method inspired by the Instance Based Learning methodology, called Trajectory Similarity Based Prediction (TSBP), is proposed. In TSBP, the historical instances of a system with life-time condition data and known failure time are used to create a library of degradation models. For a test instance of the same system whose RUL is to be estimated, similarity between it and each of the degradation models is evaluated by computing the minimal weighted Euclidean distance defined on two degradation trajectories. Based on the known failure time, each of the degradation models will produce one RUL estimate for the test instance. The final RUL estimate can then be obtained by aggregating the multiple RUL estimates using a density estimation method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanfan完成签到,获得积分10
刚刚
OMR123发布了新的文献求助10
刚刚
LQ发布了新的文献求助10
1秒前
天天快乐应助小刘采纳,获得10
2秒前
2秒前
愉快的宛儿完成签到,获得积分20
2秒前
十七发布了新的文献求助10
2秒前
2秒前
聪慧驳发布了新的文献求助10
2秒前
富贵儿完成签到 ,获得积分10
3秒前
3秒前
freedom发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
吃饭加汤发布了新的文献求助20
7秒前
素人渔夫完成签到,获得积分10
7秒前
梦旋完成签到 ,获得积分10
7秒前
LQ完成签到,获得积分10
9秒前
9秒前
10秒前
ohh发布了新的文献求助10
10秒前
bkagyin应助人间无糖冰美式采纳,获得10
11秒前
肖远完成签到,获得积分20
11秒前
guyu发布了新的文献求助30
11秒前
freedom完成签到,获得积分10
11秒前
吕文晴完成签到 ,获得积分10
14秒前
14秒前
缥缈冰珍完成签到 ,获得积分10
14秒前
zy发布了新的文献求助10
15秒前
anlikek发布了新的文献求助10
15秒前
15秒前
善学以致用应助枝枝采纳,获得20
16秒前
Jasper应助sunyue采纳,获得10
16秒前
carm小蛋黄发布了新的文献求助10
16秒前
热情冰凡发布了新的文献求助20
16秒前
ohh关闭了ohh文献求助
18秒前
zou完成签到,获得积分20
18秒前
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160242
求助须知:如何正确求助?哪些是违规求助? 2811282
关于积分的说明 7891712
捐赠科研通 2470390
什么是DOI,文献DOI怎么找? 1315472
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038