重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Trajectory Similarity Based Prediction for Remaining Useful Life Estimation

相似性(几何) 弹道 背景(考古学) 计算机科学 断层(地质) 数据挖掘 降级(电信) 过程(计算) 估计 人工智能 工程类 古生物学 电信 物理 系统工程 天文 地震学 图像(数学) 生物 地质学 操作系统
作者
Tianyi Wang
摘要

Trajectory Similarity Based Prediction for Remaining Useful Life Estimation (126 pp.) The degradation process of a complex system may be affected by many unknown factors, such as unidentified fault modes, unmeasured operational conditions, engineering variance, environmental conditions, etc. These unknown factors not only complicate the degradation behaviors of the system, but also lower the quality of the collected data for modeling. Due to lack of knowledge and incomplete measurements, certain important context information (e.g. fault modes, operational conditions) of the collected data will be missing. Therefore historical data of the system with a large variety of degradation patterns will be mixed together. With such data, learning a global model for Remaining Useful Life (RUL) prediction becomes extremely hard. This has led us to look for advanced RUL prediction techniques beyond the traditional global models. In this thesis, a novel RUL prediction method inspired by the Instance Based Learning methodology, called Trajectory Similarity Based Prediction (TSBP), is proposed. In TSBP, the historical instances of a system with life-time condition data and known failure time are used to create a library of degradation models. For a test instance of the same system whose RUL is to be estimated, similarity between it and each of the degradation models is evaluated by computing the minimal weighted Euclidean distance defined on two degradation trajectories. Based on the known failure time, each of the degradation models will produce one RUL estimate for the test instance. The final RUL estimate can then be obtained by aggregating the multiple RUL estimates using a density estimation method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
强健的迎波完成签到,获得积分10
1秒前
维护发布了新的文献求助10
1秒前
2秒前
粥粥发布了新的文献求助10
2秒前
3秒前
3秒前
Sylvia发布了新的文献求助10
4秒前
xiaoju完成签到,获得积分20
4秒前
4秒前
万能图书馆应助jh采纳,获得10
5秒前
科研通AI6应助HOOW采纳,获得10
5秒前
5秒前
宝石完成签到,获得积分10
5秒前
hanlixuan发布了新的文献求助10
6秒前
王志杰发布了新的文献求助10
6秒前
6秒前
laplatom完成签到,获得积分10
6秒前
vv完成签到,获得积分10
7秒前
8秒前
9秒前
sanyecai完成签到,获得积分10
9秒前
Akim应助维护采纳,获得10
9秒前
风轩轩发布了新的文献求助10
9秒前
10秒前
10秒前
林林林发布了新的文献求助30
11秒前
浮游应助昏睡的蟠桃采纳,获得10
11秒前
11秒前
iNk应助车车采纳,获得20
11秒前
汪格森发布了新的文献求助10
11秒前
幽默问凝发布了新的文献求助10
11秒前
园子发布了新的文献求助10
11秒前
小马甲应助王志杰采纳,获得10
11秒前
斯文败类应助万幸鹿采纳,获得10
12秒前
13秒前
Sylvia完成签到,获得积分10
13秒前
SciGPT应助pearlwh1227采纳,获得10
13秒前
傻瓜子发布了新的文献求助10
13秒前
所所应助观zz采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467656
求助须知:如何正确求助?哪些是违规求助? 4571307
关于积分的说明 14329661
捐赠科研通 4497890
什么是DOI,文献DOI怎么找? 2464141
邀请新用户注册赠送积分活动 1452961
关于科研通互助平台的介绍 1427673