亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations

图灵机 计算机科学 动力系统理论 吸引子 人工神经网络 维数之咒 神经计算模型 计算 通用图灵机 油藏计算 人工智能 循环神经网络 理论计算机科学 算法 数学 物理 数学分析 量子力学
作者
Wolfgang Maass,Thomas Natschläger,Henry Markram
出处
期刊:Neural Computation [MIT Press]
卷期号:14 (11): 2531-2560 被引量:3529
标识
DOI:10.1162/089976602760407955
摘要

A key challenge for neural modeling is to explain how a continuous stream of multimodal input from a rapidly changing environment can be processed by stereotypical recurrent circuits of integrate-and-fire neurons in real time. We propose a new computational model for real-time computing on time-varying input that provides an alternative to paradigms based on Turing machines or attractor neural networks. It does not require a task-dependent construction of neural circuits. Instead, it is based on principles of high-dimensional dynamical systems in combination with statistical learning theory and can be implemented on generic evolved or found recurrent circuitry. It is shown that the inherent transient dynamics of the high-dimensional dynamical system formed by a sufficiently large and heterogeneous neural circuit may serve as universal analog fading memory. Readout neurons can learn to extract in real time from the current state of such recurrent neural circuit information about current and past inputs that may be needed for diverse tasks. Stable internal states are not required for giving a stable output, since transient internal states can be transformed by readout neurons into stable target outputs due to the high dimensionality of the dynamical system. Our approach is based on a rigorous computational model, the liquid state machine, that, unlike Turing machines, does not require sequential transitions between well-defined discrete internal states. It is supported, as the Turing machine is, by rigorous mathematical results that predict universal computational power under idealized conditions, but for the biologically more realistic scenario of real-time processing of time-varying inputs. Our approach provides new perspectives for the interpretation of neural coding, the design of experiments and data analysis in neurophysiology, and the solution of problems in robotics and neurotechnology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yannis发布了新的文献求助10
2秒前
4秒前
冉冉发布了新的文献求助10
11秒前
天天快乐应助研友_n0gOKL采纳,获得50
20秒前
Iris完成签到 ,获得积分10
23秒前
24秒前
25秒前
鲜于元龙发布了新的文献求助10
30秒前
苏打发布了新的文献求助10
30秒前
Lizhe发布了新的文献求助10
31秒前
脑洞疼应助冉冉采纳,获得10
31秒前
34秒前
43秒前
韩保晨完成签到 ,获得积分10
44秒前
duts完成签到 ,获得积分10
44秒前
47秒前
48秒前
栀初发布了新的文献求助10
54秒前
PhD_Lee73完成签到 ,获得积分10
1分钟前
怕黑钢笔完成签到 ,获得积分10
1分钟前
lty完成签到,获得积分10
1分钟前
江南之南完成签到 ,获得积分10
1分钟前
简单的思菱完成签到 ,获得积分10
1分钟前
xzq发布了新的文献求助10
1分钟前
1分钟前
1分钟前
yilin完成签到,获得积分10
1分钟前
慕新完成签到,获得积分10
1分钟前
aiw完成签到,获得积分20
1分钟前
青羽凌雪应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
xzq完成签到,获得积分10
1分钟前
俭朴白秋发布了新的文献求助30
1分钟前
远坂时辰完成签到,获得积分10
1分钟前
一目完成签到,获得积分10
1分钟前
1分钟前
火星上星星完成签到,获得积分10
2分钟前
一目发布了新的文献求助10
2分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307266
求助须知:如何正确求助?哪些是违规求助? 2940978
关于积分的说明 8500041
捐赠科研通 2615243
什么是DOI,文献DOI怎么找? 1428784
科研通“疑难数据库(出版商)”最低求助积分说明 663542
邀请新用户注册赠送积分活动 648382