亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations

图灵机 计算机科学 动力系统理论 吸引子 人工神经网络 维数之咒 神经计算模型 计算 通用图灵机 油藏计算 人工智能 循环神经网络 理论计算机科学 算法 数学 物理 数学分析 量子力学
作者
Wolfgang Maass,Thomas Natschläger,Henry Markram
出处
期刊:Neural Computation [MIT Press]
卷期号:14 (11): 2531-2560 被引量:3846
标识
DOI:10.1162/089976602760407955
摘要

A key challenge for neural modeling is to explain how a continuous stream of multimodal input from a rapidly changing environment can be processed by stereotypical recurrent circuits of integrate-and-fire neurons in real time. We propose a new computational model for real-time computing on time-varying input that provides an alternative to paradigms based on Turing machines or attractor neural networks. It does not require a task-dependent construction of neural circuits. Instead, it is based on principles of high-dimensional dynamical systems in combination with statistical learning theory and can be implemented on generic evolved or found recurrent circuitry. It is shown that the inherent transient dynamics of the high-dimensional dynamical system formed by a sufficiently large and heterogeneous neural circuit may serve as universal analog fading memory. Readout neurons can learn to extract in real time from the current state of such recurrent neural circuit information about current and past inputs that may be needed for diverse tasks. Stable internal states are not required for giving a stable output, since transient internal states can be transformed by readout neurons into stable target outputs due to the high dimensionality of the dynamical system. Our approach is based on a rigorous computational model, the liquid state machine, that, unlike Turing machines, does not require sequential transitions between well-defined discrete internal states. It is supported, as the Turing machine is, by rigorous mathematical results that predict universal computational power under idealized conditions, but for the biologically more realistic scenario of real-time processing of time-varying inputs. Our approach provides new perspectives for the interpretation of neural coding, the design of experiments and data analysis in neurophysiology, and the solution of problems in robotics and neurotechnology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率灵槐应助原子采纳,获得10
4秒前
完美世界应助Criminology34采纳,获得100
9秒前
原子完成签到,获得积分10
16秒前
溆玉碎兰笑完成签到 ,获得积分10
19秒前
sunialnd完成签到,获得积分10
30秒前
思源应助lawang采纳,获得10
32秒前
隐形曼青应助lawang采纳,获得10
32秒前
李健的小迷弟应助lawang采纳,获得10
32秒前
思源应助lawang采纳,获得10
32秒前
研友_VZG7GZ应助lawang采纳,获得10
32秒前
Lucas应助lawang采纳,获得10
32秒前
今后应助chenjy202303采纳,获得20
1分钟前
1分钟前
Criminology34发布了新的文献求助100
1分钟前
所所应助lawang采纳,获得10
1分钟前
华仔应助lawang采纳,获得10
1分钟前
情怀应助lawang采纳,获得10
1分钟前
无花果应助lawang采纳,获得10
1分钟前
酷波er应助lawang采纳,获得10
1分钟前
今后应助lawang采纳,获得10
1分钟前
丘比特应助lawang采纳,获得10
1分钟前
Jasper应助lawang采纳,获得10
1分钟前
善学以致用应助lawang采纳,获得10
1分钟前
英俊的铭应助lawang采纳,获得10
1分钟前
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
chenjy202303发布了新的文献求助20
1分钟前
Endymion发布了新的文献求助10
1分钟前
今后应助Endymion采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658113
求助须知:如何正确求助?哪些是违规求助? 4817258
关于积分的说明 15080877
捐赠科研通 4816425
什么是DOI,文献DOI怎么找? 2577351
邀请新用户注册赠送积分活动 1532344
关于科研通互助平台的介绍 1490957