Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations

图灵机 计算机科学 动力系统理论 吸引子 人工神经网络 维数之咒 神经计算模型 计算 通用图灵机 油藏计算 人工智能 循环神经网络 理论计算机科学 算法 数学 物理 数学分析 量子力学
作者
Wolfgang Maass,Thomas Natschläger,Henry Markram
出处
期刊:Neural Computation [MIT Press]
卷期号:14 (11): 2531-2560 被引量:3686
标识
DOI:10.1162/089976602760407955
摘要

A key challenge for neural modeling is to explain how a continuous stream of multimodal input from a rapidly changing environment can be processed by stereotypical recurrent circuits of integrate-and-fire neurons in real time. We propose a new computational model for real-time computing on time-varying input that provides an alternative to paradigms based on Turing machines or attractor neural networks. It does not require a task-dependent construction of neural circuits. Instead, it is based on principles of high-dimensional dynamical systems in combination with statistical learning theory and can be implemented on generic evolved or found recurrent circuitry. It is shown that the inherent transient dynamics of the high-dimensional dynamical system formed by a sufficiently large and heterogeneous neural circuit may serve as universal analog fading memory. Readout neurons can learn to extract in real time from the current state of such recurrent neural circuit information about current and past inputs that may be needed for diverse tasks. Stable internal states are not required for giving a stable output, since transient internal states can be transformed by readout neurons into stable target outputs due to the high dimensionality of the dynamical system. Our approach is based on a rigorous computational model, the liquid state machine, that, unlike Turing machines, does not require sequential transitions between well-defined discrete internal states. It is supported, as the Turing machine is, by rigorous mathematical results that predict universal computational power under idealized conditions, but for the biologically more realistic scenario of real-time processing of time-varying inputs. Our approach provides new perspectives for the interpretation of neural coding, the design of experiments and data analysis in neurophysiology, and the solution of problems in robotics and neurotechnology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明荷花完成签到,获得积分10
1秒前
Yilam完成签到,获得积分10
2秒前
苏素肃发布了新的文献求助10
2秒前
3秒前
用户5063899完成签到,获得积分10
4秒前
科研通AI6应助69qq采纳,获得10
5秒前
哈哈哈完成签到 ,获得积分10
7秒前
caoavi完成签到 ,获得积分10
7秒前
Dream完成签到,获得积分0
7秒前
10秒前
321完成签到,获得积分20
13秒前
英勇的路灯关注了科研通微信公众号
15秒前
桃子e完成签到,获得积分10
15秒前
18秒前
Jian完成签到,获得积分10
18秒前
20秒前
冷萃咖啡完成签到,获得积分10
20秒前
20秒前
22秒前
Sean发布了新的文献求助10
22秒前
ysy完成签到,获得积分10
22秒前
xiaoyuzi发布了新的文献求助30
24秒前
25秒前
25秒前
SciGPT应助cyy采纳,获得10
25秒前
26秒前
26秒前
26秒前
27秒前
佳佳佳佳佳完成签到 ,获得积分10
27秒前
虚幻的素完成签到 ,获得积分10
28秒前
hdh发布了新的文献求助10
29秒前
zzz发布了新的文献求助10
29秒前
29秒前
31秒前
柠檬味电子对儿完成签到,获得积分10
31秒前
浅浅依云完成签到,获得积分10
32秒前
jiaka完成签到,获得积分10
32秒前
rancho发布了新的文献求助10
33秒前
舒服的觅夏完成签到,获得积分10
34秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5380142
求助须知:如何正确求助?哪些是违规求助? 4504163
关于积分的说明 14017516
捐赠科研通 4413104
什么是DOI,文献DOI怎么找? 2424070
邀请新用户注册赠送积分活动 1416950
关于科研通互助平台的介绍 1394678