自相关
数学
渐近分布
应用数学
渐近分析
冯米塞斯分布
经验分布函数
力矩(物理)
程式化事实
科尔莫戈洛夫-斯米尔诺夫试验
独立性(概率论)
成对比较
功率(物理)
统计
统计物理学
冯·米塞斯屈服准则
统计假设检验
有限元法
物理
量子力学
宏观经济学
经济
热力学
估计员
经典力学
标识
DOI:10.1111/1467-9868.00250
摘要
Summary Two tests for serial dependence are proposed using a generalized spectral theory in combination with the empirical distribution function. The tests are generalizations of the Cramér-von Mises and Kolmogorov-Smirnov tests based on the standardized spectral distribution function. They do not involve the choice of a lag order, and they are consistent against all types of pairwise serial dependence, including those with zero autocorrelation. They also require no moment condition and are distribution free under serial independence. A simulation study compares the finite sample performances of the new tests and some closely related tests. The asymptotic distribution theory works well in finite samples. The generalized Cramér-von Mises test has good power against a variety of dependent alternatives and dominates the generalized Kolmogorov-Smirnov test. A local power analysis explains some important stylized facts on the power of the tests based on the empirical distribution function.
科研通智能强力驱动
Strongly Powered by AbleSci AI