The Low Background Infrared (LBIR) facility at the National Institute of Standards and Technology (NIST) has performed ten radiance temperature calibrations of low-background blackbodies since 2001, when both the calibration facility and method of calibrating blackbodies were significantly improved. Data from nine of these blackbody calibrations are presented, showing a surprisingly large spread in blackbody performance. While some blackbodies performed relatively well, in no case did the measured radiance temperature agree with the temperature sensors in the blackbody core to within 0.3 K over the entire operating temperature range of the blackbody. Of the nine blackbodies reported, five showed temperature errors greater than 1 K at some point in their operating temperature range. The various sources of uncertainty, such as optical geometry and detector standard uncertainty, are presented with examples to support the stated calibration accuracy. Generic blackbody cavity design features, such as cavity thermal mass, cavity volume and defining aperture placement are discussed and correlated with blackbody performance. Data are also presented on the performance of the absolute cryogenic radiometers (ACRs) that are used as detector standards in the calibration of blackbodies. Recent intercomparisons of all the LBIR ACRs with a trap detector calibrated against the NIST primary optical power measurement standard show that ACRs used to calibrate blackbodies are suitable detector standards and contribute less than 0.02% uncertainty (k = 1) to radiance temperature measurements of the blackbody cavities.