额颞叶变性
肌萎缩侧索硬化
发病机制
生物
转基因小鼠
转基因
蛋白酶体
自噬
神经科学
失智症
疾病
细胞生物学
遗传学
基因
内科学
免疫学
痴呆
医学
细胞凋亡
作者
Antonella Caccamo,Darren M. Shaw,Francesca Guarino,Angela Messina,Aaron Walker,Salvatore Oddo
摘要
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP) are two neurodegenerative disorders characterized by the accumulation of TDP-43. TDP-43 is proteolitically cleaved to generate two major C-terminal fragments of 35 and 25 kDa. The latter, known as TDP-25, is a consistent feature of FTLD-TDP and ALS; however, little is known about its role in disease pathogenesis. We have previously developed transgenic mice overexpressing low levels of TDP-25 (TgTDP-25(+/0)), which at 6 months of age show mild cognitive impairments and no motor deficits. To better understand the role of TDP-25 in the pathogenesis of ALS and FTLD-TDP, we generated TDP-25 homozygous mice (TgTDP-25(+/+)), thereby further increasing TDP-25 expression. We found a gene-dosage effect on cognitive and motor function at 15 months of age, as the TgTDP-25(+/+) showed more severe spatial and working memory deficits as well as worse motor performance than TgTDP-25(+/0) mice. These behavioral deficits were associated with increased soluble levels of TDP-25 in the nucleus and cytosol. Notably, high TDP-25 levels were also linked to reduced autophagy induction and proteasome function, two events that have been associated with both ALS and FTLD-TDP. In summary, we present strong in vivo evidence that high levels of TDP-25 are sufficient to cause behavioral deficits and reduce function of two of the major protein turnover systems: autophagy and proteasome. These mice represent a new tool to study the role of TDP-25 in the pathogenesis of ALS and FTLD-TDP.
科研通智能强力驱动
Strongly Powered by AbleSci AI