作者
Daniel W. Bellott,Jennifer F. Hughes,Helen Skaletsky,Laura G. Brown,Tatyana Pyntikova,Ting-Jan Cho,Natalia Koutseva,Sara Zaghlul,Tina Graves,Susie Rock,Colin Kremitzki,Robert S. Fulton,Shannon Dugan,Yan Ding,Donna Morton,Ziad Khan,Lora Lewis,Christian Buhay,Qiaoyan Wang,Jennifer Watt,Michael Holder,Sandy Lee,Lynne Nazareth,Jessica Alföldi,Steve Rozen,Donna M. Muzny,Wesley C. Warren,Richard A. Gibbs,Richard K. Wilson,David C. Page
摘要
The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three per cent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was nonrandom, and in two cases, convergent across placental and marsupial mammals. We conclude that the gene content of the Y chromosome became specialized through selection to maintain the ancestral dosage of homologous X–Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and has unappreciated roles in Turner’s syndrome and in phenotypic differences between the sexes in health and disease. A study comparing the Y chromosome across mammalian species reveals that selection to maintain the ancestral dosage of homologous X–Y gene pairs preserved a handful of genes on the Y chromosome while the rest were lost; the survival of broadly expressed dosage-sensitive regulators of gene expression suggest that the human Y chromosome is essential for male viability. Mammalian Y chromosomes, known for their roles in sex determination and male fertility, often contain repetitive sequences that make them harder to assemble than the rest of the genome. To counter this problem Henrik Kaessmann and colleagues have developed a new transcript assembly approach based on male-specific RNA/genomic sequencing data to explore Y evolution across 15 species representing all major mammalian lineages. They find evidence for two independent sex chromosome originations in mammals and one in birds. Their analysis of the Y/W gene repertoires suggests that although some genes evolved novel functions in sex determination/spermatogenesis as a result of temporal/spatial expression changes, most Y genes probably persisted, at least initially, as a result of dosage constraints. In a parallel study, Daniel Bellott and colleagues reconstructed the evolution of the Y chromosome, using a comprehensive comparative analysis of the genomic sequence of X–Y gene pairs from seven placental mammals and one marsupial. They conclude that evolution streamlined the gene content of the human Y chromosome through selection to maintain the ancestral dosage of homologous X–Y gene pairs that regulate gene expression throughout the body. They propose that these genes make the Y chromosome essential for male viability and contribute to differences between the sexes in health and disease.