Synthesis and antiviral activity of 2′-deoxy-2′-fluoro-2′-C-methyl-7-deazapurine nucleosides, their phosphoramidate prodrugs and 5′-triphosphates
磷酰胺
前药
核苷
化学
细胞毒性
立体化学
核苷类似物
体外
化学合成
生物化学
作者
Jiyong Shi,Longhu Zhou,Hongwang Zhang,Tamara R. McBrayer,Mervi Detorio,Melissa Johns,Leda Bassit,Megan H. Powdrill,Tony Whitaker,Steven J. Coats,Matthias Götte,Raymond F. Schinazi
Thirty novel α- and β-d-2'-deoxy-2'-fluoro-2'-C-methyl-7-deazapurine nucleoside analogs were synthesized and evaluated for in vitro antiviral activity. Several α- and β-7-deazapurine nucleoside analogs exhibited modest anti-HCV activity and cytotoxicity. Four synthesized 7-deazapurine nucleoside phosphoramidate prodrugs (18-21) showed no anti-HCV activity, whereas the nucleoside triphosphates (22-24) demonstrated potent inhibitory effects against both wild-type and S282T mutant HCV polymerases. Cellular pharmacology studies in Huh-7 cells revealed that the 5'-triphosphates were not formed at significant levels from either the nucleoside or the phosphoramidate prodrugs, indicating that insufficient phosphorylation was responsible for the lack of anti-HCV activity. Evaluation of anti-HIV-1 activity revealed that an unusual α-form of 7-carbomethoxyvinyl substituted nucleoside (10) had good anti-HIV-1 activity (EC(50)=0.71±0.25 μM; EC(90)=9.5±3.3 μM) with no observed cytotoxicity up to 100 μM in four different cell lines.