生物信息学
药效团
计算生物学
药物发现
化学
数量结构-活动关系
药品
化学信息学
药理学
生物
生物信息学
生物化学
立体化学
基因
作者
Prajwal P. Nandekar,Abhay T. Sangamwar
标识
DOI:10.1517/17460441.2012.698260
摘要
Introduction: Target-specific drugs may offer fewer side/adverse effects in comparison with other anticancer agents and thus save normal healthy cells to a greater extent. The selective overexpression of cytochrome P450 1A1 (CYP1A1) in tumor cells induces the metabolism of benzothiazole and aminoflavone compounds to their reactive species, which are responsible for DNA adduct formation and cell death. This review encompasses the novelty of CYP1A1 as an anticancer drug target and explores the possible in silico strategies that would be applicable in the discovery and development of future antitumor compounds. Areas covered: This review highlights the various ligand-based and target-based in silico methodologies that were efficiently used in exploration of CYP1A1 as a novel antitumor target. These methodologies include electronic structure analysis, CoMFA studies, homology modeling, molecular docking, molecular dynamics analysis, pharmacophore mapping and quantitative structure activity relationship (QSAR) studies. It also focuses on the various approaches used in the development of the lysyl amide prodrug of 5F-203 (NSC710305) and dimethanesulfonate salt of 5-aminoflavone (NSC710464) as clinical candidates from their less potent analogues. Expert opinion: Selective overexpression of CYP1A1 in cancer cells offers tumor-specific drug design to ameliorate the current adverse effects associated with existing antitumor agents. Medicinal chemistry and in vitro driven approaches, in combination with knowledge-based drug design and by using the currently available tools of in silico methodologies, would certainly make it possible to design and develop novel anticancer compounds targeting CYP1A1.
科研通智能强力驱动
Strongly Powered by AbleSci AI