化学
恒电位仪
生物传感器
碳纳米管
核化学
安培法
循环伏安法
电极
傅里叶变换红外光谱
纳米颗粒
介电谱
电化学
化学工程
纳米技术
材料科学
生物化学
物理化学
工程类
作者
Nidhi Chauhan,C.S. Pundir
标识
DOI:10.1016/j.aca.2011.06.014
摘要
An acetylcholinesterase (AChE) purified from maize seedlings was immobilized covalently onto iron oxide nanoparticles (Fe(3)O(4)NP) and carboxylated multi walled carbon nanotubes (c-MWCNT) modified Au electrode. An organophosphorus (OP) biosensor was fabricated using this AChE/Fe(3)O(4)/c-MWCNT/Au electrode as a working electrode, Ag/AgCl as standard and Pt wire as an auxiliary electrode connected through a potentiostat. The biosensor was based on inhibition of AChE by OP compounds/insecticides. The properties of nanoparticles modified electrodes were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS). The synergistic action of Fe(3)O(4)NP and c-MWCNT showed excellent electrocatalytic activity at low potential (+0.4V). The optimum working conditions for the sensor were pH 7.5, 35°C, 600 μM substrate concentration and 10 min for inhibition by pesticide. Under optimum conditions, the inhibition rates of OP pesticides were proportional to their concentrations in the range of 0.1-40 nM, 0.1-50 nM, 1-50 nM and 10-100 nM for malathion, chlorpyrifos, monocrotophos and endosulfan respectively. The detection limits were 0.1 nM for malathion and chlorpyrifos, 1 nM for monocrotophos and 10nM for endosulfan. The biosensor exhibited good sensitivity (0.475 mA μM(-1)), reusability (more than 50 times) and stability (2 months). The sensor was suitable for trace detection of OP pesticide residues in milk and water.
科研通智能强力驱动
Strongly Powered by AbleSci AI