硅化物
材料科学
锂(药物)
硅
无定形固体
离子
纳米技术
相(物质)
原位
阳极
碳纤维
X射线光电子能谱
纳米-
电极
化学工程
化学
光电子学
物理化学
结晶学
复合数
有机化学
复合材料
内分泌学
工程类
医学
作者
Ken Ogata,Elodie Salager,Christopher Kerr,Adam Fraser,Caterina Ducati,Andrew J. Morris,Stephan Hofmann,Clare P. Grey
摘要
Nano-structured silicon anodes are attractive alternatives to graphitic carbons in rechargeable Li-ion batteries, owing to their extremely high capacities. Despite their advantages, numerous issues remain to be addressed, the most basic being to understand the complex kinetics and thermodynamics that control the reactions and structural rearrangements. Elucidating this necessitates real-time in situ metrologies, which are highly challenging, if the whole electrode structure is studied at an atomistic level for multiple cycles under realistic cycling conditions. Here we report that Si nanowires grown on a conducting carbon-fibre support provide a robust model battery system that can be studied by 7Li in situ NMR spectroscopy. The method allows the (de)alloying reactions of the amorphous silicides to be followed in the 2nd cycle and beyond. In combination with density-functional theory calculations, the results provide insight into the amorphous and amorphous-to-crystalline lithium–silicide transformations, particularly those at low voltages, which are highly relevant to practical cycling strategies. Understanding structural transformations of electrodes during cycling is of significance in batteries. Here Ogata et al. develop an approach for probing (de)lithiation processes in nano-silicon by in situNMR spectroscopy, which reveals structural and kinetic insights into the lithium–silicide phase transformations.
科研通智能强力驱动
Strongly Powered by AbleSci AI