希尔伯特-黄变换
计算机科学
噪音(视频)
混合(物理)
财产(哲学)
人工智能
信号处理
非线性系统
模式识别(心理学)
信号(编程语言)
算法
白噪声
数字信号处理
电信
图像(数学)
物理
哲学
认识论
量子力学
程序设计语言
计算机硬件
作者
Marcelo A. Colominas,Gastón Schlotthauer,Marı́a E. Torres
标识
DOI:10.1016/j.bspc.2014.06.009
摘要
The empirical mode decomposition (EMD) decomposes non-stationary signals that may stem from nonlinear systems, in a local and fully data-driven manner. Noise-assisted versions have been proposed to alleviate the so-called “mode mixing” phenomenon, which may appear when real signals are analyzed. Among them, the complete ensemble EMD with adaptive noise (CEEMDAN) recovered the completeness property of EMD. In this work we present improvements on this last technique, obtaining components with less noise and more physical meaning. Artificial signals are analyzed to illustrate the capabilities of the new method. Finally, several real biomedical signals are decomposed, obtaining components that represent physiological phenomenons.
科研通智能强力驱动
Strongly Powered by AbleSci AI