德诺苏马布
破骨细胞
兰克尔
骨吸收
双膦酸盐
骨质疏松症
医学
骨密度保护剂
骨溶解
颌骨骨坏死
化学
内科学
秩配基
癌症研究
药理学
骨矿物
内分泌学
唑来膦酸
骨重建
受体
激活剂(遗传学)
牙科
作者
Roland Baron,Serge Ferrari,R. G. G. Russell
出处
期刊:Bone
[Elsevier]
日期:2011-04-01
卷期号:48 (4): 677-692
被引量:539
标识
DOI:10.1016/j.bone.2010.11.020
摘要
To treat systemic bone loss as in osteoporosis and/or focal osteolysis as in rheumatoid arthritis or periodontal disease, most approaches target the osteoclasts, the cells that resorb bone. Bisphosphonates are currently the most widely used antiresorptive therapies. They act by binding the mineral component of bone and interfere with the action of osteoclasts. The nitrogen-containing bisphosphonates, such as alendronate, act as inhibitors of farnesyl-pyrophosphate synthase, which leads to inhibition of the prenylation of many intracellular signaling proteins. The discovery of RANKL and the essential role of RANK signaling in osteoclast differentiation, activity and survival have led to the development of denosumab, a fully human monoclonal antibody. Denosumab acts by binding to and inhibiting RANKL, leading to the loss of osteoclasts from bone surfaces. In phase 3 clinical studies, denosumab was shown to significantly reduce vertebral, nonvertebral and hip fractures compared with placebo and increase areal BMD compared with alendronate. In this review, we suggest that the key pharmacological differences between denosumab and the bisphosphonates reside in the distribution of the drugs within bone and their effects on precursors and mature osteoclasts. This may explain differences in the degree and rapidity of reduction of bone resorption, their potential differential effects on trabecular and cortical bone, and the reversibility of their actions.
科研通智能强力驱动
Strongly Powered by AbleSci AI