增广拉格朗日法
数学
惩罚法
次线性函数
数学优化
乘数(经济学)
序列二次规划
二次增长
对数
非线性规划
二次方程
功能(生物学)
凸优化
正多边形
应用数学
二次规划
非线性系统
算法
离散数学
数学分析
几何学
经济
宏观经济学
物理
量子力学
进化生物学
生物
作者
Aharon Ben-Tal,Michael Zibulevsky
出处
期刊:Siam Journal on Optimization
[Society for Industrial and Applied Mathematics]
日期:1997-02-01
卷期号:7 (2): 347-366
被引量:169
标识
DOI:10.1137/s1052623493259215
摘要
We study a class of methods for solving convex programs, which are based on nonquadratic augmented Lagrangians for which the penalty parameters are functions of the multipliers. This gives rise to Lagrangians which are nonlinear in the multipliers. Each augmented Lagrangian is specified by a choice of a penalty function $\varphi$ and a penalty-updating function $\pi$. The requirements on $\varphi$ are mild and allow for the inclusion of most of the previously suggested augmented Lagrangians. More importantly, a new type of penalty/barrier function (having a logarithmic branch glued to a quadratic branch) is introduced and used to construct an efficient algorithm. Convergence of the algorithms is proved for the case of $\pi$ being a sublinear function of the dual multipliers. The algorithms are tested on large-scale quadratically constrained problems arising in structural optimization.
科研通智能强力驱动
Strongly Powered by AbleSci AI