磁流变液
方位(导航)
磁流体
流体静力平衡
有效载荷(计算)
磁力轴承
磁场
静水压力
机械工程
机械
材料科学
工程类
物理
计算机科学
磁铁
量子力学
天文
计算机网络
网络数据包
作者
Jürgen Hesselbach,C. Abel-Keilhack
摘要
Special bearings based on magnetic fluids are well known in literature. These bearings use the magnetic pressure inside a ferrofluid that is exposed to a magnetic field. The biggest disadvantage of this principle is the small load that can be supported. In one reference [B. M. Berkovsky, V. F. Medvedev, and M. S. Krakov, Magnetic Fluids, Engineering Applications (Oxford University Press, Oxford, 1993)], the specific load is specified as 1 N cm−2. To support heavy loads very large support areas are needed. We will present a completely different concept for bearings with magnetorheological fluids. Hydrostatic bearings get their load bearing capacity from the hydrostatic pressure produced by an external pump and should not be confused with hydrodynamic bearings presented in another reference [R. Patzwald, M. S. thesis, Institute für Werkzeugmaschinen und Fabrikbetrieb, Technische Universität, Berlin (2001)]. The main disadvantage of hydrostatic bearings is that the bearing gap varies with the payload. Conventional systems compensate for these variations with a change of the oil flow rate, that is done, for example, by external valves. Our contribution will present a hydrostatic bearing that uses magnetorheological fluids. Due to the fact that magnetorheological fluids change their rheological properties with the change of an external magnetic field, it is possible to achieve a constant bearing gap even if the payload changes. The great advantage of this system compared to valve based systems is the short response time to payload changes, because the active element (i.e., the fluid) acts directly inside the bearing gap, and not outside like in the case of valves.
科研通智能强力驱动
Strongly Powered by AbleSci AI