清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identification of a Minimal Subset of Receptor Conformations for Improved Multiple Conformation Docking and Two-Step Scoring

对接(动物) 虚拟筛选 蛋白质-配体对接 寻找对接的构象空间 计算机科学 计算生物学 马修斯相关系数 化学 立体化学 分子动力学 人工智能 计算化学 结合位点 生物化学 生物 医学 支持向量机 护理部
作者
Sukjoon Yoon,William J. Welsh
出处
期刊:Journal of Chemical Information and Computer Sciences [American Chemical Society]
卷期号:44 (1): 88-96 被引量:41
标识
DOI:10.1021/ci0341619
摘要

Docking and scoring are critical issues in virtual drug screening methods. Fast and reliable methods are required for the prediction of binding affinity especially when applied to a large library of compounds. The implementation of receptor flexibility and refinement of scoring functions for this purpose are extremely challenging in terms of computational speed. Here we propose a knowledge-based multiple-conformation docking method that efficiently accommodates receptor flexibility thus permitting reliable virtual screening of large compound libraries. Starting with a small number of active compounds, a preliminary docking operation is conducted on a large ensemble of receptor conformations to select the minimal subset of receptor conformations that provides a strong correlation between the experimental binding affinity (e.g., Ki, IC50) and the docking score. Only this subset is used for subsequent multiple-conformation docking of the entire data set of library (test) compounds. In conjunction with the multiple-conformation docking procedure, a two-step scoring scheme is employed by which the optimal scoring geometries obtained from the multiple-conformation docking are re-scored by a molecular mechanics energy function including desolvation terms. To demonstrate the feasibility of this approach, we applied this integrated approach to the estrogen receptor alpha (ERalpha) system for which published binding affinity data were available for a series of structurally diverse chemicals. The statistical correlation between docking scores and experimental values was significantly improved from those of single-conformation dockings. This approach led to substantial enrichment of the virtual screening conducted on mixtures of active and inactive ERalpha compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
27秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
不安的晓灵完成签到 ,获得积分10
55秒前
紫熊完成签到,获得积分10
1分钟前
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zzz发布了新的文献求助10
1分钟前
LLLKAIXINGUO发布了新的文献求助10
2分钟前
zzz完成签到,获得积分10
2分钟前
2分钟前
2分钟前
传奇3应助科研通管家采纳,获得30
2分钟前
Arctic完成签到 ,获得积分10
2分钟前
Jessica完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
武雨寒完成签到 ,获得积分20
3分钟前
方白秋完成签到,获得积分10
3分钟前
LLLKAIXINGUO完成签到,获得积分10
4分钟前
4分钟前
冰凌心恋完成签到,获得积分10
4分钟前
娜娜完成签到 ,获得积分10
4分钟前
细雨听风完成签到,获得积分10
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
4分钟前
hyjcs完成签到,获得积分0
4分钟前
as9988776654完成签到 ,获得积分10
5分钟前
默默雪旋完成签到 ,获得积分10
5分钟前
5分钟前
chenyue233完成签到,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助50
6分钟前
花园里的蒜完成签到 ,获得积分0
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
6分钟前
loen完成签到,获得积分10
6分钟前
多亿点完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596533
求助须知:如何正确求助?哪些是违规求助? 4008426
关于积分的说明 12409207
捐赠科研通 3687443
什么是DOI,文献DOI怎么找? 2032420
邀请新用户注册赠送积分活动 1065646
科研通“疑难数据库(出版商)”最低求助积分说明 950967