Identification of a Minimal Subset of Receptor Conformations for Improved Multiple Conformation Docking and Two-Step Scoring

对接(动物) 虚拟筛选 蛋白质-配体对接 寻找对接的构象空间 计算机科学 计算生物学 马修斯相关系数 化学 立体化学 分子动力学 人工智能 计算化学 结合位点 生物化学 生物 医学 护理部 支持向量机
作者
Sukjoon Yoon,William J. Welsh
出处
期刊:Journal of Chemical Information and Computer Sciences [American Chemical Society]
卷期号:44 (1): 88-96 被引量:41
标识
DOI:10.1021/ci0341619
摘要

Docking and scoring are critical issues in virtual drug screening methods. Fast and reliable methods are required for the prediction of binding affinity especially when applied to a large library of compounds. The implementation of receptor flexibility and refinement of scoring functions for this purpose are extremely challenging in terms of computational speed. Here we propose a knowledge-based multiple-conformation docking method that efficiently accommodates receptor flexibility thus permitting reliable virtual screening of large compound libraries. Starting with a small number of active compounds, a preliminary docking operation is conducted on a large ensemble of receptor conformations to select the minimal subset of receptor conformations that provides a strong correlation between the experimental binding affinity (e.g., Ki, IC50) and the docking score. Only this subset is used for subsequent multiple-conformation docking of the entire data set of library (test) compounds. In conjunction with the multiple-conformation docking procedure, a two-step scoring scheme is employed by which the optimal scoring geometries obtained from the multiple-conformation docking are re-scored by a molecular mechanics energy function including desolvation terms. To demonstrate the feasibility of this approach, we applied this integrated approach to the estrogen receptor alpha (ERalpha) system for which published binding affinity data were available for a series of structurally diverse chemicals. The statistical correlation between docking scores and experimental values was significantly improved from those of single-conformation dockings. This approach led to substantial enrichment of the virtual screening conducted on mixtures of active and inactive ERalpha compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liutaili完成签到,获得积分10
刚刚
PXY完成签到,获得积分10
刚刚
1秒前
DrLiu发布了新的文献求助10
1秒前
WxChen发布了新的文献求助10
1秒前
小马甲应助仄兀采纳,获得10
1秒前
YAN关闭了YAN文献求助
1秒前
杏花饼发布了新的文献求助10
1秒前
筱星完成签到,获得积分10
2秒前
aaaaa发布了新的文献求助10
2秒前
宇文宛菡发布了新的文献求助10
2秒前
jacky完成签到,获得积分10
2秒前
司徒迎曼发布了新的文献求助10
2秒前
2秒前
启航完成签到,获得积分10
2秒前
3秒前
笋蒸鱼完成签到,获得积分10
3秒前
liutaili发布了新的文献求助10
3秒前
3秒前
睡到人间煮饭时完成签到,获得积分10
3秒前
4秒前
清澈水眸完成签到 ,获得积分10
4秒前
圈圈发布了新的文献求助10
4秒前
zhanlonglsj关注了科研通微信公众号
4秒前
缥缈的万天完成签到 ,获得积分10
5秒前
木禾火发布了新的文献求助10
5秒前
5秒前
5秒前
May完成签到,获得积分10
5秒前
爱静静应助忧郁凌波采纳,获得10
6秒前
Maestro_S发布了新的文献求助10
6秒前
乾坤完成签到,获得积分10
6秒前
7秒前
WxChen完成签到,获得积分10
7秒前
椰子发布了新的文献求助10
7秒前
WJ发布了新的文献求助10
8秒前
xhuryts完成签到,获得积分10
8秒前
Ll发布了新的文献求助10
8秒前
徐翩跹完成签到,获得积分10
9秒前
不喝可乐发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740