Identification of a Minimal Subset of Receptor Conformations for Improved Multiple Conformation Docking and Two-Step Scoring

对接(动物) 虚拟筛选 蛋白质-配体对接 寻找对接的构象空间 计算机科学 计算生物学 马修斯相关系数 化学 立体化学 分子动力学 人工智能 计算化学 结合位点 生物化学 生物 医学 护理部 支持向量机
作者
Sukjoon Yoon,William J. Welsh
出处
期刊:Journal of Chemical Information and Computer Sciences [American Chemical Society]
卷期号:44 (1): 88-96 被引量:41
标识
DOI:10.1021/ci0341619
摘要

Docking and scoring are critical issues in virtual drug screening methods. Fast and reliable methods are required for the prediction of binding affinity especially when applied to a large library of compounds. The implementation of receptor flexibility and refinement of scoring functions for this purpose are extremely challenging in terms of computational speed. Here we propose a knowledge-based multiple-conformation docking method that efficiently accommodates receptor flexibility thus permitting reliable virtual screening of large compound libraries. Starting with a small number of active compounds, a preliminary docking operation is conducted on a large ensemble of receptor conformations to select the minimal subset of receptor conformations that provides a strong correlation between the experimental binding affinity (e.g., Ki, IC50) and the docking score. Only this subset is used for subsequent multiple-conformation docking of the entire data set of library (test) compounds. In conjunction with the multiple-conformation docking procedure, a two-step scoring scheme is employed by which the optimal scoring geometries obtained from the multiple-conformation docking are re-scored by a molecular mechanics energy function including desolvation terms. To demonstrate the feasibility of this approach, we applied this integrated approach to the estrogen receptor alpha (ERalpha) system for which published binding affinity data were available for a series of structurally diverse chemicals. The statistical correlation between docking scores and experimental values was significantly improved from those of single-conformation dockings. This approach led to substantial enrichment of the virtual screening conducted on mixtures of active and inactive ERalpha compounds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
rain完成签到,获得积分0
2秒前
笨小孩完成签到,获得积分10
2秒前
慕青应助他们叫我小饼干采纳,获得10
2秒前
2秒前
Yu发布了新的文献求助10
3秒前
3秒前
王晨光发布了新的文献求助10
4秒前
4秒前
5秒前
深情安青应助0206采纳,获得30
6秒前
科研通AI6应助可恶啊采纳,获得10
6秒前
7秒前
烟花应助宇飞思妖采纳,获得10
7秒前
风清扬发布了新的文献求助30
9秒前
补丁完成签到,获得积分10
9秒前
10秒前
winner2030发布了新的文献求助10
10秒前
小马甲应助芝士采纳,获得10
11秒前
烟花应助阔达的元柏采纳,获得10
11秒前
轻松大王发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
冷笑完成签到,获得积分10
12秒前
13秒前
iiiid发布了新的文献求助20
13秒前
大个应助年轻的宛采纳,获得10
14秒前
14秒前
yuxin发布了新的文献求助10
15秒前
15秒前
hxh完成签到 ,获得积分10
15秒前
15秒前
善学以致用应助小石头采纳,获得10
16秒前
蒋瑞轩完成签到,获得积分10
16秒前
Owen应助66采纳,获得10
16秒前
16秒前
Dayday发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507383
求助须知:如何正确求助?哪些是违规求助? 4603007
关于积分的说明 14483238
捐赠科研通 4536810
什么是DOI,文献DOI怎么找? 2486410
邀请新用户注册赠送积分活动 1469007
关于科研通互助平台的介绍 1441377