Identification of a Minimal Subset of Receptor Conformations for Improved Multiple Conformation Docking and Two-Step Scoring

对接(动物) 虚拟筛选 蛋白质-配体对接 寻找对接的构象空间 计算机科学 计算生物学 马修斯相关系数 化学 立体化学 分子动力学 人工智能 计算化学 结合位点 生物化学 生物 医学 支持向量机 护理部
作者
Sukjoon Yoon,William J. Welsh
出处
期刊:Journal of Chemical Information and Computer Sciences [American Chemical Society]
卷期号:44 (1): 88-96 被引量:41
标识
DOI:10.1021/ci0341619
摘要

Docking and scoring are critical issues in virtual drug screening methods. Fast and reliable methods are required for the prediction of binding affinity especially when applied to a large library of compounds. The implementation of receptor flexibility and refinement of scoring functions for this purpose are extremely challenging in terms of computational speed. Here we propose a knowledge-based multiple-conformation docking method that efficiently accommodates receptor flexibility thus permitting reliable virtual screening of large compound libraries. Starting with a small number of active compounds, a preliminary docking operation is conducted on a large ensemble of receptor conformations to select the minimal subset of receptor conformations that provides a strong correlation between the experimental binding affinity (e.g., Ki, IC50) and the docking score. Only this subset is used for subsequent multiple-conformation docking of the entire data set of library (test) compounds. In conjunction with the multiple-conformation docking procedure, a two-step scoring scheme is employed by which the optimal scoring geometries obtained from the multiple-conformation docking are re-scored by a molecular mechanics energy function including desolvation terms. To demonstrate the feasibility of this approach, we applied this integrated approach to the estrogen receptor alpha (ERalpha) system for which published binding affinity data were available for a series of structurally diverse chemicals. The statistical correlation between docking scores and experimental values was significantly improved from those of single-conformation dockings. This approach led to substantial enrichment of the virtual screening conducted on mixtures of active and inactive ERalpha compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kelakola完成签到,获得积分10
刚刚
香蕉觅云应助清图采纳,获得10
1秒前
1秒前
carly发布了新的文献求助10
2秒前
乐乐应助沈星燃采纳,获得10
2秒前
3秒前
丽莫莫完成签到,获得积分10
4秒前
寂寞的灵发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
123321完成签到,获得积分10
7秒前
7秒前
科研乞丐应助简单的奇迹采纳,获得20
7秒前
脑洞疼应助佳音采纳,获得30
8秒前
8秒前
慕青应助猪肉水饺采纳,获得10
9秒前
9秒前
eco发布了新的文献求助10
10秒前
10秒前
简单以冬完成签到,获得积分20
11秒前
11秒前
Lucas应助妩媚的尔阳采纳,获得50
11秒前
康康完成签到 ,获得积分20
11秒前
王乐乐发布了新的文献求助30
12秒前
整齐茗发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
14秒前
zhouleibio完成签到,获得积分10
15秒前
传奇3应助千枼采纳,获得10
15秒前
SYLH应助ddd采纳,获得10
16秒前
乐乐应助ddd采纳,获得10
16秒前
寂寞的灵发布了新的文献求助10
16秒前
Lucas应助wangyanyan采纳,获得10
17秒前
王乐乐完成签到,获得积分20
17秒前
lqs完成签到 ,获得积分10
18秒前
FishBoooooo完成签到,获得积分20
18秒前
青阳发布了新的文献求助10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011199
求助须知:如何正确求助?哪些是违规求助? 3550895
关于积分的说明 11306713
捐赠科研通 3285098
什么是DOI,文献DOI怎么找? 1810962
邀请新用户注册赠送积分活动 886662
科研通“疑难数据库(出版商)”最低求助积分说明 811581