卡尔曼滤波器
小波
乙状窦函数
激活函数
计算机科学
人工神经网络
扩展卡尔曼滤波器
风速
李普希茨连续性
控制理论(社会学)
小波变换
人工智能
算法
模式识别(心理学)
数学
地理
控制(管理)
气象学
数学分析
作者
Luis J. Ricalde,Glendy A. Catzin,Alma Y. Alanis,Edgar N. Sánchez
标识
DOI:10.1109/ciasg.2011.5953332
摘要
In this paper, a Higher Order Wavelet Neural Network (HOWNN) trained with an Extended Kalman Filter (EKF) is implemented to solve the wind forecasting problem. The Neural Network based scheme is composed of high order terms in the input layer, two hidden layers, one incorporating radial wavelets as activation functions and the other using classical logistic sigmoid, and an output layer with a linear activation function. A Kalman filter based algorithm is employed to update the synaptic weights of the wavelet network. The size of the regression vector is determined by means of the Lipschitz quotients method. The proposed structure captures more efficiently the complex nature of the wind speed time series. The proposed model is trained and tested using real wind speed data values.
科研通智能强力驱动
Strongly Powered by AbleSci AI