High‐Energy Mechanical Treatment Boosts Ion Transport in Nanocrystalline Li2B4O7

微晶 纳米晶材料 材料科学 无定形固体 离子 离子电导率 电导率 离子键合 分析化学(期刊) 结晶学 纳米技术 化学 物理化学 冶金 电解质 色谱法 电极 有机化学
作者
Dominik Wohlmuth,Viktor Epp,Bernhard Stanje,Anna‐Maria Welsch,Harald Behrens,Martin Wilkening
出处
期刊:Journal of the American Ceramic Society [Wiley]
卷期号:99 (5): 1687-1693 被引量:30
标识
DOI:10.1111/jace.14165
摘要

In many cases fast solid ion conductors are characterized by a large number fraction of defects and vacant positions that enable the ions to move over long distances in a facile way. The introduction of structural disorder via high‐energy mechanical impact represents a very promising possibility to improve and to tune the transport properties of otherwise poorly conducting solids. Lithium tetraborate, Li 2 B 4 O 7 , in its single crystalline form or with an average crystallite size in the μm range, is known as a very poor Li ion conductor and can serve as a model compound to study the influence of structural disorder on ion dynamics. In the present study, we used high‐energy ball milling to prepare nanocrystalline defect‐rich Li 2 B 4 O 7 characterized by a mean crystallite diameter of ca. 20 nm. With increasing milling time the sample became partly amorphous. Polycrystalline Li 2 B 4 O 7 with crystallite sizes in the order of 100 nm served as starting material. The nanostructured samples obtained show dc conductivities σ dc in the order of 2.5 × 10 −7 S/cm at 490 K which represents an increase by more than four orders of magnitude compared to the source material. While conductivity spectroscopy was applied to study the effect of different milling times on ionic conductivity in detail; Li ion self‐diffusion in nanostructured Li 2 B 4 O 7 as well as in the starting material was investigated by variable‐temperature solid‐state 7 Li nuclear magnetic resonance ( NMR ) relaxometry. While the first is sensitive to long‐range ion transport, lithium NMR is able to access also short‐ranged ion motions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀傲之发布了新的文献求助150
4秒前
5秒前
无花果应助丫丫采纳,获得10
5秒前
老师心腹大患完成签到,获得积分10
7秒前
Akim应助day_on采纳,获得10
8秒前
源老头完成签到,获得积分10
11秒前
tuanheqi应助完美的海秋采纳,获得150
11秒前
12秒前
Orange应助儒雅沛凝采纳,获得10
13秒前
景景好完成签到,获得积分10
13秒前
carbonhan完成签到,获得积分10
14秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
16秒前
六六应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
不配.应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
18秒前
18秒前
20秒前
day_on发布了新的文献求助10
22秒前
pluto应助朴素海亦采纳,获得10
22秒前
脸就是黑啊完成签到,获得积分10
22秒前
老实的振家完成签到,获得积分10
22秒前
yiheng发布了新的文献求助10
22秒前
来了来了完成签到,获得积分10
24秒前
24秒前
李健应助ardejiang采纳,获得10
26秒前
卡牌大师完成签到,获得积分10
29秒前
29秒前
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242411
求助须知:如何正确求助?哪些是违规求助? 2886764
关于积分的说明 8244805
捐赠科研通 2555314
什么是DOI,文献DOI怎么找? 1383399
科研通“疑难数据库(出版商)”最低求助积分说明 649702
邀请新用户注册赠送积分活动 625537