Thruster fault identification based on fractal feature and multiresolution wavelet decomposition for autonomous underwater vehicle

断层(地质) 分形 特征(语言学) 小波 特征提取 模式识别(心理学) 鉴定(生物学) 人工智能 时域 水下 工程类 计算机科学 算法 数据挖掘 计算机视觉 数学 地质学 海洋学 数学分析 哲学 生物 植物 地震学 语言学
作者
Weixin Liu,Yujia Wang,Baoji Yin,Xing Liu,Mingjun Zhang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:231 (13): 2528-2539 被引量:17
标识
DOI:10.1177/0954406216632280
摘要

There exist some problems when the fractal feature method is applied to identify thruster faults for autonomous underwater vehicles (AUVs). Sometimes it could not identify the thruster fault, or the identification error is large, even the identification results are not consistent for the repeated experiments. The paper analyzes the reasons resulting in these above problems according to the experiments on AUV prototype with thruster faults. On the basis of these analyses, in order to overcome the above deficiency, an improved fractal feature integrated with wavelet decomposition identification method is proposed for AUV with thruster fault. Different from the fractal feature method where the signal extraction and fault identification are completed in the time domain, the paper makes use of the time-domain and frequent-domain information to identify thruster faults. In the paper, the thruster fault could be mapped multisource and described redundantly by the fault feature matrix constructed based on the time-domain and frequent-domain information. In the process of identification, different from the fractal feature method where the fault is identified based on fault identification model, the fault sample bank is built at first in the paper, and then pattern recognition is achieved by calculating the relative coefficients between the constructed fault feature matrix and the elements in the fault sample bank. Finally, the online pool experiments are performed on an AUV prototype, and the effectiveness of the proposed method is demonstrated in comparison with the fractal feature method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南亭完成签到,获得积分10
刚刚
Dr.Lee完成签到 ,获得积分10
刚刚
刚刚
大冰发布了新的文献求助10
刚刚
西番雅完成签到,获得积分10
刚刚
奥特超曼应助理理采纳,获得10
刚刚
132完成签到,获得积分10
1秒前
ppg123应助哪位采纳,获得10
1秒前
彭于晏应助wzxhhh采纳,获得10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
princesun083完成签到,获得积分10
2秒前
zqlxueli完成签到 ,获得积分10
2秒前
爱听歌澜完成签到,获得积分10
2秒前
2秒前
刘岩松发布了新的文献求助10
3秒前
树上种树发布了新的文献求助10
3秒前
西番雅发布了新的文献求助10
3秒前
3秒前
孙微祥完成签到,获得积分10
4秒前
等待的航空完成签到 ,获得积分10
4秒前
FashionBoy应助ginkgoleaf采纳,获得10
4秒前
谷粱紫槐完成签到,获得积分10
5秒前
情怀应助研友_ZlxxzZ采纳,获得10
5秒前
你笑一下嘛zz完成签到,获得积分10
5秒前
5秒前
机灵猕猴桃完成签到,获得积分10
6秒前
6秒前
6秒前
奥特超曼应助Ssss采纳,获得10
7秒前
Master_Ye完成签到,获得积分10
8秒前
菜菜发布了新的文献求助10
8秒前
9秒前
右右发布了新的文献求助10
9秒前
10秒前
余好运完成签到,获得积分20
10秒前
Bio应助耕牛热采纳,获得50
10秒前
tingting发布了新的文献求助10
10秒前
完美世界应助林夏采纳,获得10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582