Wnt信号通路
连环素
癌症研究
连环蛋白
生物
转基因
钙粘蛋白
信号转导
细胞生物学
细胞
遗传学
基因
作者
Qingling Zhang,Lina Yu,Liu Li,Shuang Wang,Yufang Yang,Ding Yi,Jeevan Divakaran,Xin Li,Yanqing Ding
摘要
Latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) can induce cell transformation and tumourigenesis, but the mechanism is not understood. Previous studies have suggested that LMP1 acts through up-regulation of cellular proliferation pathways including the Wnt/β-catenin pathway, in which β-catenin is the central effector. Increased levels of β-catenin coupled with a decrease in E-cadherin lead to reduced cell adhesion. This pathway is antagonized by WTX (Wilms' tumour gene on the X chromosome), which can promote the ubiquitination and degradation of β-catenin. In the present study, we established L2/LMP1B(95 - 8) /EGFP transgenic mice to investigate the in vivo role of LMP1. Down-regulation of WTX and E-cadherin was accompanied by increased expression of β-catenin in these mice. Even though invasive tumours did not develop, dysplasia was seen in the nasopharynx and oropharynx epithelium of these transgenic mice. Analysis of LMP1(+) , WTX(+) , and LMP1 siRNA silenced HNE-1 cell lines demonstrated that WTX could exert a dominant role in LMP1-mediated WNT/β-catenin pathway regulation. This study indicates that LMP1 antagonizes the WNT/β-catenin pathway by inhibiting WTX, and this reduction in WTX is associated with epithelial dysplasia via regulation of the WNT/β-catenin pathway molecules E-cadherin and β-catenin. Further studies are required for a better understanding of the relationship between LMP1-mediated antagonization of the WNT/β-catenin pathway and tumourigenesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI