Constitutive Modeling of Brain Tissue: Current Perspectives

计算机科学 本构方程 奥格登 脑组织 人工智能 神经科学 心理学 物理 有限元法 热力学
作者
R. de Rooij,Ellen Kuhl
出处
期刊:Applied Mechanics Reviews [ASME International]
卷期号:68 (1) 被引量:113
标识
DOI:10.1115/1.4032436
摘要

Modeling the mechanical response of the brain has become increasingly important over the past decades. Although mechanical stimuli to the brain are small under physiological conditions, mechanics plays a significant role under pathological conditions including brain development, brain injury, and brain surgery. Well calibrated and validated constitutive models for brain tissue are essential to accurately simulate these phenomena. A variety of constitutive models have been proposed over the past three decades, but no general consensus on these models exists. Here, we provide a comprehensive and structured overview of state-of-the-art modeling of the brain tissue. We categorize the different features of existing models into time-independent, time-dependent, and history-dependent contributions. To model the time-independent, elastic behavior of the brain tissue, most existing models adopt a hyperelastic approach. To model the time-dependent response, most models either use a convolution integral approach or a multiplicative decomposition of the deformation gradient. We evaluate existing constitutive models by their physical motivation and their practical relevance. Our comparison suggests that the classical Ogden model is a well-suited phenomenological model to characterize the time-independent behavior of the brain tissue. However, no consensus exists for mechanistic, physics-based models, neither for the time-independent nor for the time-dependent response. We anticipate that this review will provide useful guidelines for selecting the appropriate constitutive model for a specific application and for refining, calibrating, and validating future models that will help us to better understand the mechanical behavior of the human brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
嘻嘻哈哈完成签到 ,获得积分10
刚刚
Owen应助丿小智灬采纳,获得10
刚刚
赘婿应助今夕何夕采纳,获得10
2秒前
邱清完成签到,获得积分10
2秒前
蛋妞儿完成签到,获得积分10
2秒前
柠檬味冰沙完成签到,获得积分10
2秒前
SUGAR发布了新的文献求助10
2秒前
Mike完成签到,获得积分10
2秒前
2秒前
2秒前
小马甲应助细腻的仙人掌采纳,获得10
2秒前
victor完成签到,获得积分10
3秒前
5秒前
标准碳酸氢盐完成签到 ,获得积分10
5秒前
紫禁城的雪花完成签到,获得积分10
6秒前
菠菜发布了新的文献求助10
6秒前
chenzhuod发布了新的文献求助10
6秒前
很多奶油完成签到 ,获得积分10
6秒前
6秒前
随性完成签到,获得积分10
6秒前
柚子完成签到,获得积分10
6秒前
无聊的听寒完成签到 ,获得积分10
6秒前
科研通AI2S应助顽主采纳,获得10
6秒前
跳跃的太君完成签到,获得积分10
6秒前
在水一方应助Treasure98采纳,获得10
6秒前
xyzdmmm完成签到,获得积分10
6秒前
7秒前
万元帅完成签到 ,获得积分10
7秒前
Ganlou发布了新的文献求助10
7秒前
加菲宝宝完成签到,获得积分20
8秒前
田茂青完成签到,获得积分10
8秒前
最最完成签到,获得积分10
9秒前
牛逼的昂完成签到,获得积分10
9秒前
10秒前
聪慧的石头完成签到,获得积分10
10秒前
手帕很忙完成签到,获得积分10
10秒前
橡皮人完成签到,获得积分10
10秒前
Nuyoah完成签到,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3467085
求助须知:如何正确求助?哪些是违规求助? 3059913
关于积分的说明 9068876
捐赠科研通 2750332
什么是DOI,文献DOI怎么找? 1509216
科研通“疑难数据库(出版商)”最低求助积分说明 697153
邀请新用户注册赠送积分活动 697082