已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Constitutive Modeling of Brain Tissue: Current Perspectives

计算机科学 本构方程 奥格登 脑组织 人工智能 神经科学 心理学 物理 有限元法 热力学
作者
R. de Rooij,Ellen Kuhl
出处
期刊:Applied Mechanics Reviews [American Society of Mechanical Engineers]
卷期号:68 (1) 被引量:130
标识
DOI:10.1115/1.4032436
摘要

Modeling the mechanical response of the brain has become increasingly important over the past decades. Although mechanical stimuli to the brain are small under physiological conditions, mechanics plays a significant role under pathological conditions including brain development, brain injury, and brain surgery. Well calibrated and validated constitutive models for brain tissue are essential to accurately simulate these phenomena. A variety of constitutive models have been proposed over the past three decades, but no general consensus on these models exists. Here, we provide a comprehensive and structured overview of state-of-the-art modeling of the brain tissue. We categorize the different features of existing models into time-independent, time-dependent, and history-dependent contributions. To model the time-independent, elastic behavior of the brain tissue, most existing models adopt a hyperelastic approach. To model the time-dependent response, most models either use a convolution integral approach or a multiplicative decomposition of the deformation gradient. We evaluate existing constitutive models by their physical motivation and their practical relevance. Our comparison suggests that the classical Ogden model is a well-suited phenomenological model to characterize the time-independent behavior of the brain tissue. However, no consensus exists for mechanistic, physics-based models, neither for the time-independent nor for the time-dependent response. We anticipate that this review will provide useful guidelines for selecting the appropriate constitutive model for a specific application and for refining, calibrating, and validating future models that will help us to better understand the mechanical behavior of the human brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HB发布了新的文献求助10
刚刚
Owen应助cjh采纳,获得10
1秒前
1秒前
2秒前
2秒前
5秒前
6秒前
6秒前
cnnnnn完成签到 ,获得积分10
7秒前
灵巧的沛山完成签到,获得积分10
7秒前
李悦发布了新的文献求助10
8秒前
桐桐应助果冻橙采纳,获得30
8秒前
9秒前
仰望星空发布了新的文献求助10
11秒前
NexusExplorer应助果冻橙采纳,获得10
12秒前
13秒前
15秒前
汉堡包应助燕绥采纳,获得10
16秒前
江野完成签到 ,获得积分10
18秒前
后陡门爱神完成签到 ,获得积分10
20秒前
21秒前
cjh发布了新的文献求助10
24秒前
梨凉完成签到,获得积分10
24秒前
Akim应助李悦采纳,获得10
25秒前
花深粥完成签到,获得积分10
25秒前
斯文无敌发布了新的文献求助30
27秒前
haocong发布了新的文献求助10
27秒前
CipherSage应助读书的时候采纳,获得10
28秒前
30秒前
B4完成签到 ,获得积分10
31秒前
32秒前
赘婿应助cjh采纳,获得10
34秒前
38秒前
rrrick发布了新的文献求助10
40秒前
愛研究完成签到,获得积分10
40秒前
Hey完成签到 ,获得积分10
41秒前
41秒前
41秒前
吉他独奏手完成签到,获得积分10
41秒前
wxyshare应助lucy采纳,获得10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934928
求助须知:如何正确求助?哪些是违规求助? 4202628
关于积分的说明 13058156
捐赠科研通 3977166
什么是DOI,文献DOI怎么找? 2179428
邀请新用户注册赠送积分活动 1195530
关于科研通互助平台的介绍 1106945