已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Constitutive Modeling of Brain Tissue: Current Perspectives

计算机科学 本构方程 奥格登 脑组织 人工智能 神经科学 心理学 物理 有限元法 热力学
作者
R. de Rooij,Ellen Kuhl
出处
期刊:Applied Mechanics Reviews [American Society of Mechanical Engineers]
卷期号:68 (1) 被引量:130
标识
DOI:10.1115/1.4032436
摘要

Modeling the mechanical response of the brain has become increasingly important over the past decades. Although mechanical stimuli to the brain are small under physiological conditions, mechanics plays a significant role under pathological conditions including brain development, brain injury, and brain surgery. Well calibrated and validated constitutive models for brain tissue are essential to accurately simulate these phenomena. A variety of constitutive models have been proposed over the past three decades, but no general consensus on these models exists. Here, we provide a comprehensive and structured overview of state-of-the-art modeling of the brain tissue. We categorize the different features of existing models into time-independent, time-dependent, and history-dependent contributions. To model the time-independent, elastic behavior of the brain tissue, most existing models adopt a hyperelastic approach. To model the time-dependent response, most models either use a convolution integral approach or a multiplicative decomposition of the deformation gradient. We evaluate existing constitutive models by their physical motivation and their practical relevance. Our comparison suggests that the classical Ogden model is a well-suited phenomenological model to characterize the time-independent behavior of the brain tissue. However, no consensus exists for mechanistic, physics-based models, neither for the time-independent nor for the time-dependent response. We anticipate that this review will provide useful guidelines for selecting the appropriate constitutive model for a specific application and for refining, calibrating, and validating future models that will help us to better understand the mechanical behavior of the human brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千寻完成签到,获得积分10
1秒前
PAD完成签到,获得积分10
3秒前
5秒前
华仔应助科研进化中采纳,获得10
9秒前
哈哈哈发布了新的文献求助10
10秒前
10秒前
旨酒欣欣应助PAD采纳,获得10
10秒前
14秒前
18秒前
19秒前
Zhaowx完成签到,获得积分10
19秒前
kk发布了新的文献求助10
24秒前
ying发布了新的文献求助10
24秒前
lizibelle发布了新的文献求助10
24秒前
CodeCraft应助科研通管家采纳,获得10
38秒前
田様应助科研通管家采纳,获得10
38秒前
领导范儿应助科研通管家采纳,获得10
38秒前
41秒前
迷路的初柔完成签到 ,获得积分10
43秒前
45秒前
wu完成签到,获得积分10
47秒前
孤独含蕾完成签到 ,获得积分10
49秒前
SAXA完成签到,获得积分10
51秒前
斯文麦片完成签到 ,获得积分10
52秒前
称心如意完成签到 ,获得积分10
52秒前
小白白发布了新的文献求助10
52秒前
btsforever完成签到 ,获得积分10
56秒前
m鹿m嘟啦完成签到 ,获得积分20
57秒前
共享精神应助zakarya采纳,获得10
1分钟前
GQ完成签到,获得积分10
1分钟前
xiaojian_291完成签到,获得积分10
1分钟前
所所应助lizibelle采纳,获得10
1分钟前
1分钟前
Wish完成签到,获得积分10
1分钟前
zz发布了新的文献求助10
1分钟前
kk发布了新的文献求助10
1分钟前
liu发布了新的文献求助10
1分钟前
1分钟前
1分钟前
lizibelle完成签到,获得积分20
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965542
求助须知:如何正确求助?哪些是违规求助? 3510831
关于积分的说明 11155263
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176