响应度
光电探测器
石墨烯
光电子学
材料科学
等离子体子
红外线的
吸收(声学)
超短脉冲
光学
纳米技术
物理
激光器
复合材料
作者
Zefeng Chen,Xinming Li,Jiaqi Wang,Li Tao,Mingzhu Long,Shi‐Jun Liang,L. K. Ang,Chester Shu,Hon Ki Tsang,Jianbin Xu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2017-01-12
卷期号:11 (1): 430-437
被引量:190
标识
DOI:10.1021/acsnano.6b06172
摘要
Graphene's unique electronic and optical properties have made it an attractive material for developing ultrafast short-wave infrared (SWIR) photodetectors. However, the performance of graphene SWIR photodetectors has been limited by the low optical absorption of graphene as well as the ultrashort lifetime of photoinduced carriers. Here, we present two mechanisms to overcome these two shortages and demonstrate a graphene-based SWIR photodetector with high responsivity and fast photoresponse. In particular, a vertical built-in field is employed in the graphene channel for trapping the photoinduced electrons and leaving holes in graphene, which results in prolonged photoinduced carrier lifetime. On the other hand, plasmonic effects were employed to realize photon trapping and enhance the light absorption of graphene. Thanks to the above two mechanisms, the responsivity of this proposed SWIR photodetector is up to a record of 83 A/W at a wavelength of 1.55 μm with a fast rising time of less than 600 ns. This device design concept addresses key challenges for high-performance graphene SWIR photodetectors and is promising for the development of mid/far-infrared optoelectronic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI