Discrimination of pesticide residues in lettuce based on chemical molecular structure coupled with wavelet transform and near infrared hyperspectra

高光谱成像 小波 模式识别(心理学) 小波变换 化学 农药残留 生物系统 人工智能 红外线的 杀虫剂 分析化学(期刊) 数学 计算机科学 色谱法 光学 物理 生物 农学
作者
Jun Sun,Xin Zhou,Hanping Mao,Xiaohong Wu,Xiaodong Zhang,Qinglin Li
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:40 (4) 被引量:30
标识
DOI:10.1111/jfpe.12509
摘要

Abstract To facilitate more quickly and effectively detect the types of pesticide residues on the surface of lettuce, a method involving the chemical molecular structure coupled with wavelet transform (CMS‐WT) was proposed to extract the characteristic wavelength. Five different kinds of pesticide residues were sprayed on the surface of lettuce, respectively, dimethoate, acephate, phoxim, dichlorvos, avermectin (the ratio of pesticides and water were 1:1000). In addition, the near infrared hyperspectral image information of 200 samples in five different kinds of pesticides residue in lettuce were achieved by the NIR hyperspectral imaging system (870–1780 nm). The region of interest (ROI) in hyperspectral image of samples was selected to get the near infrared spectral data by the software of ENVI. Furthermore, CMS‐WT was used to extract the most influential wavelengths. Four characteristic intervals were extracted by comparing the different of pesticides in chemical molecular structures, respectively, 875—1050 nm, 1050—1250 nm, 1350—1550 nm, 1650—1780 nm. Further, the best combination of eight features were selected according to the reorder of the size of the singular value by wavelet transform algorithm using db6 as wavelet basis function, respectively, 919.18, 944.25, 972.25, 1194.20, 1363.81, 1426.69, 1673.29, 1680.74 nm. Finally, SVM model was established according to the extracted characteristic spectral data. The results showed that the calibration and prediction accuracy of SVM model established by the best combination of eight features were all achieved 100%. It confirms that the CMS‐WT feature extraction algorithm is feasible and effective for building models of different pesticide residues in lettuce. Practical applications Well understanding the effect of pesticide residues to biological structure is very important for revelation of novel biological function and mechanism of action of the protein. To facilitate more quickly and effectively detect the types of pesticide residues on the surface of lettuce, a method involving the chemical molecular structure coupled with wavelet transform (CMS‐WT) was proposed to extract the characteristic wavelength in this article. It confirms that the CMS‐WT feature extraction algorithm is feasible and effective for building models of different pesticide residues in lettuce.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助cccccttt采纳,获得10
刚刚
刚刚
PXY完成签到,获得积分10
1秒前
啦啦啦完成签到,获得积分10
1秒前
2秒前
Mayeleven发布了新的文献求助30
4秒前
沉默丹亦发布了新的文献求助30
4秒前
绿兔子完成签到,获得积分10
5秒前
5秒前
完美世界应助66采纳,获得30
6秒前
yafei完成签到 ,获得积分10
6秒前
现实的宝马完成签到,获得积分10
7秒前
我不吃牛肉完成签到,获得积分10
8秒前
9秒前
程传勇完成签到,获得积分10
9秒前
11111111111完成签到,获得积分10
9秒前
37完成签到,获得积分10
12秒前
小夫应助百岁小咪采纳,获得10
16秒前
小帅完成签到,获得积分10
16秒前
白白发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
18秒前
zq应助科研通管家采纳,获得10
18秒前
zq应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733271
求助须知:如何正确求助?哪些是违规求助? 5347662
关于积分的说明 15323495
捐赠科研通 4878407
什么是DOI,文献DOI怎么找? 2621220
邀请新用户注册赠送积分活动 1570329
关于科研通互助平台的介绍 1527224