HPLC-UV Polyphenolic Profiles in the Classification of Olive Oils and Other Vegetable Oils via Principal Component Analysis

色谱法 化学 高效液相色谱法 植物油 多酚 葵花籽油 萃取(化学) 脱脂 甲酸 主成分分析 食品科学 数学 生物化学 统计 抗氧化剂
作者
Mireia Farrés-Cebrián,Raquel Seró,Javier Saurina,Óscar Núñez
出处
期刊:Separations [MDPI AG]
卷期号:3 (4): 33-33 被引量:31
标识
DOI:10.3390/separations3040033
摘要

High performance liquid chromatography-ultraviolet (HPLC-UV) was applied to the analysis and characterization of olive oils and other vegetable oils. A chromatographic separation on a Zorbax Eclipse XDB-C8 reversed-phase column was proposed under gradient elution, employing 0.1% formic acid aqueous solution and methanol as mobile phase, for the determination of 14 polyphenols and phenolic acids, allowing us to obtain compositional profiles in less than 20 min. Acceptable sensitivity (limit of detection (LOD) values down to 80 µg/L in the best of cases), linearity (r2 higher than 0.986), good run-to-run and day-to-day precisions (relative standard deviation (RSD) values lower than 11.5%), and method trueness (relative errors lower than 6.8%) were obtained. The proposed HPLC-UV method was then applied to the analysis of 72 oil samples (47 olive oils and 27 vegetable oils including sunflower, soy, corn, and mixtures of them). Analytes were recovered using a liquid–liquid extraction method employing ethanol:water 70:30 (v/v) solution and hexane as extracting and defatting solvents, respectively. HPLC-UV polyphenolic profiles using peak areas were then analysed by principal component analysis (PCA) to extract information from the most significant data contributing to the characterization and classification of olive oils against other vegetable oils, as well as among Arbequina and Picual olive oil varieties. PCA results showed a noticeable difference between olive oils and the other classes. In addition, a reasonable discrimination of olive oils as a function of fruit varieties was also encountered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whale完成签到,获得积分10
刚刚
刚刚
hjj发布了新的文献求助10
1秒前
1秒前
双勾玉发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
起司嗯发布了新的文献求助30
3秒前
长虹完成签到,获得积分10
3秒前
4秒前
vision发布了新的文献求助10
5秒前
桑榆非晚完成签到,获得积分10
5秒前
hui完成签到,获得积分20
5秒前
baby的跑男完成签到,获得积分10
5秒前
Faith完成签到,获得积分10
6秒前
6秒前
Mercurius完成签到,获得积分10
7秒前
7秒前
7秒前
ganzhongxin完成签到,获得积分10
7秒前
12356完成签到,获得积分10
7秒前
8秒前
今后应助白华苍松采纳,获得10
8秒前
跳跃乘风发布了新的文献求助20
8秒前
不舍天真发布了新的文献求助20
9秒前
坚强的樱发布了新的文献求助10
9秒前
温暖以蓝发布了新的文献求助10
9秒前
9秒前
wanci应助幸福胡萝卜采纳,获得10
9秒前
9秒前
Ych发布了新的文献求助10
9秒前
gjy完成签到,获得积分10
10秒前
vision完成签到,获得积分10
10秒前
小小发布了新的文献求助10
10秒前
Katie完成签到,获得积分10
10秒前
LT发布了新的文献求助10
10秒前
11秒前
科研人完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762