HPLC-UV Polyphenolic Profiles in the Classification of Olive Oils and Other Vegetable Oils via Principal Component Analysis

色谱法 化学 高效液相色谱法 植物油 多酚 葵花籽油 萃取(化学) 脱脂 甲酸 主成分分析 食品科学 数学 生物化学 统计 抗氧化剂
作者
Mireia Farrés-Cebrián,Raquel Seró,Javier Saurina,Óscar Núñez
出处
期刊:Separations [MDPI AG]
卷期号:3 (4): 33-33 被引量:31
标识
DOI:10.3390/separations3040033
摘要

High performance liquid chromatography-ultraviolet (HPLC-UV) was applied to the analysis and characterization of olive oils and other vegetable oils. A chromatographic separation on a Zorbax Eclipse XDB-C8 reversed-phase column was proposed under gradient elution, employing 0.1% formic acid aqueous solution and methanol as mobile phase, for the determination of 14 polyphenols and phenolic acids, allowing us to obtain compositional profiles in less than 20 min. Acceptable sensitivity (limit of detection (LOD) values down to 80 µg/L in the best of cases), linearity (r2 higher than 0.986), good run-to-run and day-to-day precisions (relative standard deviation (RSD) values lower than 11.5%), and method trueness (relative errors lower than 6.8%) were obtained. The proposed HPLC-UV method was then applied to the analysis of 72 oil samples (47 olive oils and 27 vegetable oils including sunflower, soy, corn, and mixtures of them). Analytes were recovered using a liquid–liquid extraction method employing ethanol:water 70:30 (v/v) solution and hexane as extracting and defatting solvents, respectively. HPLC-UV polyphenolic profiles using peak areas were then analysed by principal component analysis (PCA) to extract information from the most significant data contributing to the characterization and classification of olive oils against other vegetable oils, as well as among Arbequina and Picual olive oil varieties. PCA results showed a noticeable difference between olive oils and the other classes. In addition, a reasonable discrimination of olive oils as a function of fruit varieties was also encountered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助hm采纳,获得10
1秒前
55555发布了新的文献求助10
1秒前
HH完成签到,获得积分10
2秒前
2秒前
3秒前
四爷完成签到,获得积分10
5秒前
桐桐应助55555采纳,获得10
5秒前
HH发布了新的文献求助10
6秒前
李爱国应助Wcy采纳,获得10
6秒前
小冉发布了新的文献求助10
7秒前
oasis关注了科研通微信公众号
11秒前
幽默的凡完成签到 ,获得积分10
12秒前
火星上的书南完成签到,获得积分20
12秒前
调皮汽车发布了新的文献求助10
12秒前
puppy完成签到,获得积分10
12秒前
13秒前
13秒前
齐天完成签到 ,获得积分10
24秒前
25秒前
zzyh发布了新的文献求助30
25秒前
leotao完成签到,获得积分10
29秒前
AireenBeryl531应助zq123采纳,获得10
31秒前
小蘑菇应助zq123采纳,获得30
31秒前
完美世界应助zq123采纳,获得10
31秒前
在水一方应助zq123采纳,获得10
31秒前
那一年的河川完成签到,获得积分10
32秒前
LXZ完成签到,获得积分10
32秒前
32秒前
清秀不言完成签到 ,获得积分10
33秒前
33秒前
34秒前
Wcy发布了新的文献求助10
36秒前
36秒前
七个娃娃发布了新的文献求助10
38秒前
38秒前
宓觅波发布了新的文献求助10
40秒前
QxQMDR完成签到,获得积分10
41秒前
111完成签到,获得积分10
45秒前
标致山兰完成签到,获得积分20
48秒前
111发布了新的文献求助10
49秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240875
求助须知:如何正确求助?哪些是违规求助? 2885573
关于积分的说明 8239275
捐赠科研通 2554021
什么是DOI,文献DOI怎么找? 1382130
科研通“疑难数据库(出版商)”最低求助积分说明 649471
邀请新用户注册赠送积分活动 625097