HPLC-UV Polyphenolic Profiles in the Classification of Olive Oils and Other Vegetable Oils via Principal Component Analysis

色谱法 化学 高效液相色谱法 植物油 多酚 葵花籽油 萃取(化学) 脱脂 甲酸 主成分分析 食品科学 数学 生物化学 统计 抗氧化剂
作者
Mireia Farrés-Cebrián,Raquel Seró,Javier Saurina,Óscar Núñez
出处
期刊:Separations [MDPI AG]
卷期号:3 (4): 33-33 被引量:31
标识
DOI:10.3390/separations3040033
摘要

High performance liquid chromatography-ultraviolet (HPLC-UV) was applied to the analysis and characterization of olive oils and other vegetable oils. A chromatographic separation on a Zorbax Eclipse XDB-C8 reversed-phase column was proposed under gradient elution, employing 0.1% formic acid aqueous solution and methanol as mobile phase, for the determination of 14 polyphenols and phenolic acids, allowing us to obtain compositional profiles in less than 20 min. Acceptable sensitivity (limit of detection (LOD) values down to 80 µg/L in the best of cases), linearity (r2 higher than 0.986), good run-to-run and day-to-day precisions (relative standard deviation (RSD) values lower than 11.5%), and method trueness (relative errors lower than 6.8%) were obtained. The proposed HPLC-UV method was then applied to the analysis of 72 oil samples (47 olive oils and 27 vegetable oils including sunflower, soy, corn, and mixtures of them). Analytes were recovered using a liquid–liquid extraction method employing ethanol:water 70:30 (v/v) solution and hexane as extracting and defatting solvents, respectively. HPLC-UV polyphenolic profiles using peak areas were then analysed by principal component analysis (PCA) to extract information from the most significant data contributing to the characterization and classification of olive oils against other vegetable oils, as well as among Arbequina and Picual olive oil varieties. PCA results showed a noticeable difference between olive oils and the other classes. In addition, a reasonable discrimination of olive oils as a function of fruit varieties was also encountered.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助淡定的不言采纳,获得10
刚刚
1秒前
tepqi完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
毛於菟发布了新的文献求助10
3秒前
4秒前
容二遥关注了科研通微信公众号
4秒前
布噜噜噜噜完成签到,获得积分10
4秒前
4秒前
5秒前
大模型应助eblog采纳,获得10
5秒前
Ting发布了新的文献求助20
5秒前
6秒前
端庄龙猫发布了新的文献求助30
6秒前
juaner完成签到,获得积分10
6秒前
KAI发布了新的文献求助10
7秒前
天天快乐应助二维马采纳,获得10
7秒前
7秒前
徐sir发布了新的文献求助10
7秒前
牛战士完成签到,获得积分10
8秒前
FSS完成签到,获得积分20
8秒前
YANYAN发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
cc应助Kycg采纳,获得20
9秒前
alan完成签到,获得积分10
9秒前
9秒前
muchen发布了新的文献求助10
10秒前
11秒前
JJ发布了新的文献求助10
12秒前
12秒前
小兵发布了新的文献求助10
12秒前
13秒前
lsl599应助guojingjing采纳,获得10
13秒前
淡然胡萝卜完成签到,获得积分10
13秒前
15秒前
tan_sg发布了新的文献求助10
16秒前
无极微光应助Ting采纳,获得20
16秒前
CodeCraft应助夙念采纳,获得10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049