Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model

计算机科学 数据挖掘 入侵检测系统 特征选择 C4.5算法 异常检测 启发式 网络安全 机器学习 人工智能 朴素贝叶斯分类器 支持向量机 操作系统
作者
Shadi Aljawarneh,Monther Aldwairi,Muneer Bani Yassein
出处
期刊:Journal of Computational Science [Elsevier BV]
卷期号:25: 152-160 被引量:601
标识
DOI:10.1016/j.jocs.2017.03.006
摘要

Efficiently detecting network intrusions requires the gathering of sensitive information. This means that one has to collect large amounts of network transactions including high details of recent network transactions. Assessments based on meta-heuristic anomaly are important in the intrusion related network transaction data’s exploratory analysis. These assessments are needed to make and deliver predictions related to the intrusion possibility based on the available attribute details that are involved in the network transaction. We were able to utilize the NSL-KDD data set, the binary and multiclass problem with a 20% testing dataset. This paper develops a new hybrid model that can be used to estimate the intrusion scope threshold degree based on the network transaction data’s optimal features that were made available for training. The experimental results revealed that the hybrid approach had a significant effect on the minimisation of the computational and time complexity involved when determining the feature association impact scale. The accuracy of the proposed model was measured as 99.81% and 98.56% for the binary class and multiclass NSL-KDD data sets, respectively. However, there are issues with obtaining high false and low false negative rates. A hybrid approach with two main parts is proposed to address these issues. First, data needs to be filtered using the Vote algorithm with Information Gain that combines the probability distributions of these base learners in order to select the important features that positively affect the accuracy of the proposed model. Next, the hybrid algorithm consists of following classifiers: J48, Meta Pagging, RandomTree, REPTree, AdaBoostM1, DecisionStump and NaiveBayes. Based on the results obtained using the proposed model, we observe improved accuracy, high false negative rate, and low false positive rule.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RoeyShi完成签到,获得积分10
刚刚
郑嘻嘻完成签到,获得积分10
刚刚
英俊碧灵完成签到,获得积分10
1秒前
lei发布了新的文献求助10
2秒前
wanz完成签到,获得积分10
2秒前
跳跳虎完成签到,获得积分10
2秒前
赘婿应助难过小懒虫采纳,获得30
2秒前
Eric完成签到,获得积分10
3秒前
3秒前
3秒前
Kvolu29完成签到,获得积分10
3秒前
3秒前
搬砖feng发布了新的文献求助10
4秒前
传奇3应助可怜的小羊采纳,获得10
4秒前
CipherSage应助逸云采纳,获得10
5秒前
Crystal完成签到 ,获得积分10
5秒前
nihaoya完成签到,获得积分10
5秒前
Adenine完成签到 ,获得积分10
5秒前
cjlumm发布了新的文献求助10
6秒前
搞怪满天发布了新的文献求助10
6秒前
脑洞疼应助jmx234采纳,获得10
6秒前
biov完成签到,获得积分10
6秒前
tt完成签到 ,获得积分10
6秒前
852应助典雅的芮采纳,获得10
7秒前
7秒前
tlf发布了新的文献求助10
7秒前
7秒前
8秒前
lilli完成签到,获得积分0
8秒前
8秒前
大个应助灵巧的荔枝采纳,获得10
8秒前
摆烂完成签到,获得积分10
9秒前
9秒前
table完成签到,获得积分10
10秒前
10秒前
善良的冷梅完成签到,获得积分10
11秒前
小熊发布了新的文献求助20
11秒前
ty完成签到,获得积分20
12秒前
SASI完成签到 ,获得积分10
12秒前
RX信完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016369
求助须知:如何正确求助?哪些是违规求助? 3556535
关于积分的说明 11321511
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812429
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060