Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model

计算机科学 数据挖掘 入侵检测系统 特征选择 C4.5算法 异常检测 启发式 网络安全 机器学习 人工智能 朴素贝叶斯分类器 支持向量机 操作系统
作者
Shadi Aljawarneh,Monther Aldwairi,Muneer Bani Yassein
出处
期刊:Journal of Computational Science [Elsevier]
卷期号:25: 152-160 被引量:601
标识
DOI:10.1016/j.jocs.2017.03.006
摘要

Efficiently detecting network intrusions requires the gathering of sensitive information. This means that one has to collect large amounts of network transactions including high details of recent network transactions. Assessments based on meta-heuristic anomaly are important in the intrusion related network transaction data’s exploratory analysis. These assessments are needed to make and deliver predictions related to the intrusion possibility based on the available attribute details that are involved in the network transaction. We were able to utilize the NSL-KDD data set, the binary and multiclass problem with a 20% testing dataset. This paper develops a new hybrid model that can be used to estimate the intrusion scope threshold degree based on the network transaction data’s optimal features that were made available for training. The experimental results revealed that the hybrid approach had a significant effect on the minimisation of the computational and time complexity involved when determining the feature association impact scale. The accuracy of the proposed model was measured as 99.81% and 98.56% for the binary class and multiclass NSL-KDD data sets, respectively. However, there are issues with obtaining high false and low false negative rates. A hybrid approach with two main parts is proposed to address these issues. First, data needs to be filtered using the Vote algorithm with Information Gain that combines the probability distributions of these base learners in order to select the important features that positively affect the accuracy of the proposed model. Next, the hybrid algorithm consists of following classifiers: J48, Meta Pagging, RandomTree, REPTree, AdaBoostM1, DecisionStump and NaiveBayes. Based on the results obtained using the proposed model, we observe improved accuracy, high false negative rate, and low false positive rule.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小程同学完成签到,获得积分10
刚刚
刚刚
快乐公主完成签到 ,获得积分10
刚刚
失眠的傲柔完成签到,获得积分20
1秒前
任性的败完成签到,获得积分10
1秒前
1秒前
1秒前
不安青牛应助漂亮的访冬采纳,获得10
2秒前
hansa完成签到,获得积分0
2秒前
胡萝北丁发布了新的文献求助10
2秒前
丸子发布了新的文献求助10
3秒前
3秒前
aiya发布了新的文献求助10
3秒前
zhang001完成签到,获得积分10
4秒前
4秒前
5秒前
所所应助阿华采纳,获得10
5秒前
5秒前
Sisi发布了新的文献求助30
6秒前
阔达白筠发布了新的文献求助10
6秒前
芝士蛋糕发布了新的文献求助10
7秒前
爆米花应助积水采纳,获得10
7秒前
7秒前
搜集达人应助结实的中恶采纳,获得10
7秒前
yy发布了新的文献求助10
7秒前
ee发布了新的文献求助10
7秒前
XXX发布了新的文献求助10
7秒前
8秒前
多边棱完成签到,获得积分10
8秒前
FashionBoy应助lessormoto采纳,获得10
9秒前
pzc完成签到,获得积分10
9秒前
SciGPT应助沉静的唯雪采纳,获得10
9秒前
三黑猫应助丸橙采纳,获得30
9秒前
bioglia完成签到,获得积分10
10秒前
wanci应助afaf采纳,获得10
10秒前
华仔应助大鱼儿采纳,获得10
10秒前
11秒前
CipherSage应助盖盖盖浇饭采纳,获得10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3442812
求助须知:如何正确求助?哪些是违规求助? 3039049
关于积分的说明 8974956
捐赠科研通 2727539
什么是DOI,文献DOI怎么找? 1496035
科研通“疑难数据库(出版商)”最低求助积分说明 691392
邀请新用户注册赠送积分活动 688601