Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model

计算机科学 数据挖掘 入侵检测系统 特征选择 C4.5算法 异常检测 启发式 网络安全 机器学习 人工智能 朴素贝叶斯分类器 支持向量机 操作系统
作者
Shadi Aljawarneh,Monther Aldwairi,Muneer Bani Yassein
出处
期刊:Journal of Computational Science [Elsevier]
卷期号:25: 152-160 被引量:601
标识
DOI:10.1016/j.jocs.2017.03.006
摘要

Efficiently detecting network intrusions requires the gathering of sensitive information. This means that one has to collect large amounts of network transactions including high details of recent network transactions. Assessments based on meta-heuristic anomaly are important in the intrusion related network transaction data’s exploratory analysis. These assessments are needed to make and deliver predictions related to the intrusion possibility based on the available attribute details that are involved in the network transaction. We were able to utilize the NSL-KDD data set, the binary and multiclass problem with a 20% testing dataset. This paper develops a new hybrid model that can be used to estimate the intrusion scope threshold degree based on the network transaction data’s optimal features that were made available for training. The experimental results revealed that the hybrid approach had a significant effect on the minimisation of the computational and time complexity involved when determining the feature association impact scale. The accuracy of the proposed model was measured as 99.81% and 98.56% for the binary class and multiclass NSL-KDD data sets, respectively. However, there are issues with obtaining high false and low false negative rates. A hybrid approach with two main parts is proposed to address these issues. First, data needs to be filtered using the Vote algorithm with Information Gain that combines the probability distributions of these base learners in order to select the important features that positively affect the accuracy of the proposed model. Next, the hybrid algorithm consists of following classifiers: J48, Meta Pagging, RandomTree, REPTree, AdaBoostM1, DecisionStump and NaiveBayes. Based on the results obtained using the proposed model, we observe improved accuracy, high false negative rate, and low false positive rule.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
R_joy发布了新的文献求助10
2秒前
桐桐应助轻松的如冰采纳,获得10
2秒前
2秒前
FashionBoy应助aerfa采纳,获得30
2秒前
维奈克拉应助yyl采纳,获得20
3秒前
lll发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
研友_8DAv0L发布了新的文献求助10
4秒前
4秒前
FashionBoy应助阿肖呀采纳,获得10
5秒前
6秒前
6秒前
搜集达人应助小孙要努力采纳,获得10
6秒前
Overtone完成签到,获得积分10
7秒前
辛勤汲完成签到,获得积分10
8秒前
赘婿应助时舒采纳,获得30
9秒前
大模型应助Eric采纳,获得10
10秒前
科研通AI6应助lll采纳,获得10
12秒前
12秒前
13秒前
uu发布了新的文献求助10
13秒前
今后应助研友_8DAv0L采纳,获得30
16秒前
小二郎应助不帅气的小鱼采纳,获得10
16秒前
17秒前
乐事薯片噢完成签到,获得积分10
17秒前
小徐同志完成签到,获得积分10
17秒前
18秒前
Lucas应助yunt采纳,获得10
20秒前
myg8627发布了新的文献求助10
23秒前
23秒前
24秒前
Akim应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
25秒前
JamesPei应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
Hello应助科研通管家采纳,获得10
25秒前
25秒前
任梦萍发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578711
求助须知:如何正确求助?哪些是违规求助? 4663506
关于积分的说明 14746896
捐赠科研通 4604465
什么是DOI,文献DOI怎么找? 2526940
邀请新用户注册赠送积分活动 1496536
关于科研通互助平台的介绍 1465830