Giant tunable Rashba spin splitting in a two-dimensional BiSb monolayer and in BiSb/AlN heterostructures

凝聚态物理 异质结 单层 费米能级 材料科学 拉希巴效应 带隙 半导体 自旋电子学 物理 电子 铁磁性 纳米技术 光电子学 量子力学
作者
Sobhit Singh,A. Romero
出处
期刊:Physical review [American Physical Society]
卷期号:95 (16) 被引量:177
标识
DOI:10.1103/physrevb.95.165444
摘要

The search for novel two-dimensional giant Rashba semiconductors is a crucial step in the development of the forth coming nanospintronic technology. Using first-principles calculations, we study a stable two-dimension alcrystal phase of BiSb having buckled honeycomb lattice geometry, which is yet unexplored. The phonon, room temperature molecular dynamics, and elastic constant calculations verify the dynamical and mechanical stability of the monolayer at 0 K and at room temperature. The calculated electronic band structure reveals the direct bandgap semiconducting nature of a BiSb monolayer with the presence of a highly mobile two-dimensional electron gas(2DEG) near the Fermi level. Inclusion of spin-orbit coupling yields the giant Rashba spin-splitting of a 2DEG near the Fermi level. The calculated Rashba energy and Rashba splitting constant are 13 meV and 2.3 eVÅ, respectively,which are amongst the largest yet known Rashba spin splitting parameters in 2D materials. In our work, we demonstrate that the strength of the Rashba spin splitting can be significantly tuned by applying in-plane biaxial strain on the BiSb monolayer. The presence of the giant Rashba spin splitting together with the large electronic band gap(1.6 eV) makes this system of peculiar interest for optoelectronics applications. Furthermore, we study the electronic properties of BiSb/AlN heterostructures having a lattice mismatch of 1.3% at the interface. Our results suggest that a BiSb monolayer and BiSb/AlN heterostructure systems could be potentially used to develop highly efficient spin field-effect transistors, optoelectronics, and nanospintronic devices. Thus, this comprehensive studyof two-dimensional BiSb systems can expand the range of possible applications in future spintronic technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助cryjslong采纳,获得10
刚刚
刚刚
1秒前
zxp发布了新的文献求助10
1秒前
大古关注了科研通微信公众号
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
JamesPei应助LeslieHu采纳,获得10
3秒前
隐形曼青应助林深沉采纳,获得10
3秒前
搜集达人应助tianmafei采纳,获得10
3秒前
大个应助美年达采纳,获得10
3秒前
4秒前
朴素代秋完成签到,获得积分10
4秒前
杜薇薇发布了新的文献求助10
5秒前
咖啡豆发布了新的文献求助10
5秒前
高兴溪流完成签到,获得积分20
6秒前
6秒前
6秒前
ymjssg应助lee采纳,获得10
6秒前
帅气的机器猫完成签到 ,获得积分10
6秒前
希望天下0贩的0应助浮浮采纳,获得10
6秒前
wzt发布了新的文献求助10
7秒前
7秒前
稻香茶煦发布了新的文献求助10
7秒前
大个应助doing采纳,获得10
7秒前
8秒前
张天宇完成签到,获得积分10
8秒前
8秒前
8秒前
共享精神应助YingyingFan采纳,获得10
9秒前
crazy完成签到,获得积分10
9秒前
高兴溪流发布了新的文献求助10
9秒前
yzr发布了新的文献求助10
9秒前
111完成签到,获得积分10
9秒前
yike关注了科研通微信公众号
9秒前
9秒前
自觉从筠发布了新的文献求助10
10秒前
玛卡巴卡完成签到,获得积分10
10秒前
上官若男应助子姜采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731