Giant tunable Rashba spin splitting in a two-dimensional BiSb monolayer and in BiSb/AlN heterostructures

凝聚态物理 异质结 单层 费米能级 材料科学 拉希巴效应 带隙 半导体 自旋电子学 物理 电子 铁磁性 纳米技术 光电子学 量子力学
作者
Sobhit Singh,A. Romero
出处
期刊:Physical review [American Physical Society]
卷期号:95 (16) 被引量:148
标识
DOI:10.1103/physrevb.95.165444
摘要

The search for novel two-dimensional giant Rashba semiconductors is a crucial step in the development of the forthcoming nanospintronic technology. Using first-principles calculations, we study a stable two-dimensional crystal phase of BiSb having buckled honeycomb lattice geometry, which is yet unexplored. The phonon, room temperature molecular dynamics, and elastic constant calculations verify the dynamical and mechanical stability of the monolayer at 0 K and at room temperature. The calculated electronic band structure reveals the direct band gap semiconducting nature of a BiSb monolayer with the presence of a highly mobile two-dimensional electron gas (2DEG) near the Fermi level. Inclusion of spin-orbit coupling yields the giant Rashba spin-splitting of a 2DEG near the Fermi level. The calculated Rashba energy and Rashba splitting constant are 13 meV and 2.3 eV\AA{}, respectively, which are amongst the largest yet known Rashba spin splitting parameters in 2D materials. We demonstrate that the strength of the Rashba spin splitting can be significantly tuned by applying in-plane biaxial strain on the BiSb monolayer. The presence of the giant Rashba spin splitting together with the large electronic band gap (1.6 eV) makes this system of peculiar interest for optoelectronics applications. Furthermore, we study the electronic properties of BiSb/AlN heterostructures having a lattice mismatch of 1.3% at the interface. Our results suggest that a BiSb monolayer and BiSb/AlN heterostructure systems could be potentially used to develop highly efficient spin field-effect transistors, optoelectronics, and nanospintronic devices. Thus, this comprehensive study of two-dimensional BiSb systems can expand the range of possible applications in future spintronic technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
5秒前
zxy完成签到 ,获得积分10
6秒前
陈_Ccc完成签到 ,获得积分10
10秒前
zhao完成签到,获得积分10
10秒前
14秒前
苗条丹南完成签到 ,获得积分10
17秒前
法外狂徒唐老鸭完成签到 ,获得积分10
17秒前
南宫士晋完成签到 ,获得积分10
17秒前
buerzi完成签到,获得积分10
18秒前
秦梦瑶瑶发布了新的文献求助10
18秒前
dayday完成签到,获得积分10
18秒前
一枝完成签到 ,获得积分10
21秒前
wzk完成签到,获得积分10
22秒前
22秒前
LaixS完成签到,获得积分10
24秒前
可爱蓝天完成签到,获得积分10
24秒前
执着千筹完成签到,获得积分10
26秒前
要笑cc完成签到,获得积分10
26秒前
宣宣宣0733完成签到,获得积分10
28秒前
猪猪hero发布了新的文献求助10
28秒前
包容的以彤完成签到 ,获得积分10
28秒前
ceeray23发布了新的文献求助20
30秒前
胡质斌完成签到,获得积分10
30秒前
完美世界应助秦梦瑶瑶采纳,获得10
31秒前
量子星尘发布了新的文献求助10
33秒前
btcat完成签到,获得积分10
35秒前
General完成签到 ,获得积分10
36秒前
iorpi完成签到,获得积分10
36秒前
北有云烟完成签到 ,获得积分10
41秒前
43秒前
danli完成签到 ,获得积分10
45秒前
符宇新发布了新的文献求助10
47秒前
大大彬完成签到 ,获得积分10
50秒前
Owen应助幽默艳采纳,获得10
50秒前
龚问萍完成签到 ,获得积分10
53秒前
77完成签到 ,获得积分10
53秒前
LYQ完成签到 ,获得积分10
54秒前
李健的小迷弟应助haochi采纳,获得10
1分钟前
qiancib202完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008738
求助须知:如何正确求助?哪些是违规求助? 3548380
关于积分的说明 11298823
捐赠科研通 3283051
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218