玉米素
下胚轴
芸苔属
细胞分裂素
植物
生物
化学
园艺
生物化学
生长素
基因
作者
Komarova Gi,Babosha Av
摘要
Physiologically active substances are considered as a potential component of plant cultivation technologies for biological life support systems. In spacelight, plant reactions to growth-regulating agents may be changed by the specific stress factors such as microgravity, radiation, and trace admixtures in cabin air. Complex character of the concentration dependence of PAS efficiency and consequent variability generate a need to optimize plant growth regulating technologies in order to stabilize the wanted effect. Pattern of the concentration dependence of zeatin and tidiazurone effects on roots and hypocotyls growth was analyzed in rape germs. 24-hour Brassica napus germs grown in the dark in thermostat at 24 degrees C were transferred to Petri dishes with solutions of cytokinins under study for continued incubation under the same conditions for the next 24 hours. Roots and hypocotyls were measured. Zeatin concentration curve for roots was multiphase and, in addition to the general trend towards greater inhibition with increase of phyto-hormone concentration and had clearly defined minimum and maximum. The dependence of root growth inhibition on tidiazurone concentration also was not monotonic and had a distinct similarity with the zeatin curve. Gradual increase of tidiazurone concentration used in combination with zeatin brought about a predictable gradual twist of the zeatin curve; however, in most of the instances no additive cytokinin effect was observed. A supposition can be made that PAS interaction with the phytohormone regulation system may be a factor in variability of activity of these substances.
科研通智能强力驱动
Strongly Powered by AbleSci AI