智能电表
计算机科学
智能电网
测光模式
决策树
钥匙(锁)
光学(聚焦)
数据挖掘
电动汽车
过程(计算)
信息隐私
集合(抽象数据类型)
数据建模
人工智能
机器学习
工程类
计算机安全
数据库
物理
光学
电气工程
功率(物理)
操作系统
量子力学
程序设计语言
机械工程
作者
Qiyun Dang,Yuchong Huo,Chu Sun
标识
DOI:10.1109/isgt-asia.2018.8467822
摘要
This paper introduces a practical method to determine the EV model (Car Make A model B) from high resolution (/1min) energy consumption data. The proposed method shows the importance of privacy preservation for smart meter system. The paper demonstrate the decision making process as solving a multiclass classification problem. In particular, we focus on extracting the key features of given EV charging profiles, and using the features as attributes to set up a Decision Tree (DT). We illustrate the classification problem in a 2-dimensional space and train the decision boundaries of the DT by labeled "dataid-EV model" data sets. We show that using the trained DT is efficient to predict the model of several type-unknown EVs in a distribution grid. The results would help in developing privacy-enhanced loads metering methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI