A Deep Learning Tennis Ball Collection Robot and the Implementation on NVIDIA Jetson TX1 Board

球(数学) 网球 机器人 工作量 人工智能 计算机科学 模拟 工程类 操作系统 机械工程 体育器材 数学分析 数学
作者
Shenshen Gu,Xinyi Chen,Wei Zeng,Xin Wang
标识
DOI:10.1109/aim.2018.8452263
摘要

The service robots are becoming more and more popular in our daily life and bring us a lot of convenience. They also enter a few sports activities. For tennis playing, the tennis ball collection robot can relieve players' workload as people don't need to stoop to pick up tennis balls. There are two important tasks for a tennis ball collection robot. One is the recognition of tennis balls, and the other is the path planning of picking up balls. These two tasks can be fulfilled by machine learning algorithms. However, most conventional machine learning algorithms need hand-designed parameter, which are unable to design for these robotic tasks. Deep learning algorithms are base on nonlinear models which have great potential for these tasks. For this reason, we propose a tennis ball collection robot based on deep learning methods. For the path planning, we formulate it with the Travelling Salesman Problem (TSP) and then apply the Pointer Networks. And for tennis ball recognition, we use YOLO (You Only Look Once) model. These two models are implemented on NVIDIA Jetson TX1 board. With the proper training data set and training progress, these two models work well on the tennis ball collection robot.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小斌完成签到,获得积分10
刚刚
1秒前
Magicer发布了新的文献求助10
1秒前
慕青应助牛马码字员采纳,获得10
1秒前
星辰大海应助dspan采纳,获得10
1秒前
热木发布了新的文献求助10
1秒前
wanmiao12完成签到,获得积分10
2秒前
秋夏山发布了新的文献求助10
3秒前
丘比特应助乔乔乔乔采纳,获得10
3秒前
4秒前
深情安青应助jia采纳,获得10
5秒前
双生客完成签到,获得积分10
5秒前
共享精神应助刘二狗采纳,获得30
6秒前
无语的康乃馨完成签到,获得积分10
6秒前
岳饼发布了新的文献求助10
7秒前
7秒前
9秒前
桐桐应助随心采纳,获得10
9秒前
kingwill应助徐智秀采纳,获得20
9秒前
小语发布了新的文献求助10
10秒前
烤肠完成签到,获得积分10
10秒前
yhnsag完成签到,获得积分10
10秒前
11秒前
彳亍完成签到 ,获得积分10
11秒前
12秒前
快乐蜗牛完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
吭吭菜菜完成签到,获得积分10
14秒前
14秒前
TheShy发布了新的文献求助10
15秒前
16秒前
热木完成签到,获得积分10
16秒前
ding应助SUNLE采纳,获得10
17秒前
雪山飞龙发布了新的文献求助10
17秒前
17秒前
17秒前
乔乔乔乔发布了新的文献求助10
18秒前
z今晚吃哥斯拉1完成签到,获得积分10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734838
求助须知:如何正确求助?哪些是违规求助? 3278737
关于积分的说明 10011382
捐赠科研通 2995434
什么是DOI,文献DOI怎么找? 1643431
邀请新用户注册赠送积分活动 781171
科研通“疑难数据库(出版商)”最低求助积分说明 749290