阳极
材料科学
电解质
阴极
锂钴氧化物
介孔材料
化学工程
碳纤维
电极
锂(药物)
电池(电)
锂离子电池
复合材料
化学
催化作用
内分泌学
物理化学
医学
功率(物理)
生物化学
工程类
物理
复合数
量子力学
作者
Chaojiang Niu,Huilin Pan,Wu Xu,Jie Xiao,Ji‐Guang Zhang,Langli Luo,Chongmin Wang,Donghai Mei,Jiashen Meng,Xuanpeng Wang,Ziang Liu,Liqiang Mai,Jun Liu
标识
DOI:10.1038/s41565-019-0427-9
摘要
Despite considerable efforts to stabilize lithium metal anode structures and prevent dendrite formation, achieving long cycling life in high-energy batteries under realistic conditions remains extremely difficult due to a combination of complex failure modes that involve accelerated anode degradation and the depletion of electrolyte and lithium metal. Here we report a self-smoothing lithium–carbon anode structure based on mesoporous carbon nanofibres, which, coupled with a lithium nickel–manganese–cobalt oxide cathode with a high nickel content, can lead to a cell-level energy density of 350–380 Wh kg−1 (counting all the active and inactive components) and a stable cycling life up to 200 cycles. These performances are achieved under the realistic conditions required for practical high-energy rechargeable lithium metal batteries: cathode loading ≥4.0 mAh cm−2, negative to positive electrode capacity ratio ≤2 and electrolyte weight to cathode capacity ratio ≤3 g Ah−1. The high stability of our anode is due to the amine functionalization and the mesoporous carbon structures that favour smooth lithium deposition. Metallic lithium wets a functionalized mesoporous carbon film to create a self-smoothing anode that, in conjunction with a standard lithium nickel–manganese–cobalt cathode, delivers long cycling life, 350 Wh kg−1 high-energy cells under realistic conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI