甲酸脱氢酶
化学
格式化
还原(数学)
无机化学
金属
脱氢酶
组合化学
生物化学
酶
有机化学
催化作用
数学
几何学
作者
Yijing Chen,Peng Li,Hyunho Noh,Chung‐Wei Kung,Cassandra T. Buru,Xingjie Wang,Xuan Zhang,Omar K. Farha
标识
DOI:10.1002/anie.201901981
摘要
The efficient fixation of excess CO2 from the atmosphere to yield value-added chemicals remains crucial in response to the increasing levels of carbon emission. Coupling enzymatic reactions with electrochemical regeneration of cofactors is a promising technique for fixing CO2, while producing biomass which can be further transformed into biofuels. Herein, a bioelectrocatalytic system was established by depositing crystallites of a mesoporous metal–organic framework (MOF), termed NU-1006, containing formate dehydrogenase, on a fluorine-doped tin oxide glass electrode modified with Cp*Rh(2,2′-bipyridyl-5,5′-dicarboxylic acid)Cl2 complex. This system converts CO2 into formic acid at a rate of 79±3.4 mm h−1 with electrochemical regeneration of the nicotinamide adenine dinucleotide cofactor. The MOF–enzyme composite exhibited significantly higher catalyst stability when subjected to non-native conditions compared to the free enzyme, doubling the formic acid yield.
科研通智能强力驱动
Strongly Powered by AbleSci AI