The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers

脱氢 氢气储存 可再生能源 能量载体 催化作用 储能 化学工程 材料科学 废物管理 化学 有机化学 功率(物理) 热力学 工程类 物理 电气工程
作者
Phillimon Modisha,Cecil Naphtaly Moro Ouma,Rudaviro Garidzirai,Peter Wasserscheid,Dmitri Bessarabov
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:33 (4): 2778-2796 被引量:385
标识
DOI:10.1021/acs.energyfuels.9b00296
摘要

Reducing CO2 emissions is an urgent global priority. The enforcement of a CO2 tax, stringent regulations, and investment in renewables are some of the mitigation strategies currently in place. For a smooth transition to renewable energy, the energy storage issue must be addressed decisively. Hydrogen is regarded as a clean energy carrier; however, its low density at ambient conditions makes its storage challenging. The storage of hydrogen in liquid organic hydrogen carriers (LOHC) systems has numerous advantages over conventional storage systems. Most importantly, hydrogen storage and transport in the form of LOHC systems enables the use of the existing infrastructure for fuel. From a thermodynamic point of view, hydrogen storage in LOHC systems requires an exothermic hydrogenation step and an endothermic dehydrogenation step. Interestingly, hydrogenation and dehydrogenation can be carried out at the same temperature level. Under high hydrogen pressures (typically above 20 bar as provided from electrolysis or methane reforming), LOHC charging occurs and catalytic hydrogenation takes place. Under low hydrogen pressures (typically below 5 bar), hydrogen release from the LOHC system takes place. Hydrogen release from charged LOHC systems is always in conflict between highly power-dense hydrogen production and LOHC stability over many charging/discharging cycles. We therefore discuss the role of different catalyst materials on hydrogen productivity and LOHC stability. The use of density functional theory techniques to determine adsorption energies and to identify rate-determining steps in the LOHC conversion processes is also described. Furthermore, the performance of a LOHC dehydrogenation unit is strongly dependent on the applied reactor configuration. Industrial implementation of the LOHC technology has started but is still in an early stage. Related to this, we have identified promising application scenarios for the South African energy market.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BCY发布了新的文献求助10
1秒前
3秒前
XSCJ完成签到,获得积分20
4秒前
6秒前
李健应助复杂宇宙采纳,获得10
6秒前
iNk应助应应采纳,获得30
6秒前
7秒前
flow完成签到 ,获得积分10
7秒前
hao发布了新的文献求助10
8秒前
10秒前
陈老太发布了新的文献求助10
11秒前
赘婿应助洛尘采纳,获得10
12秒前
兜兜完成签到,获得积分10
13秒前
13秒前
应应完成签到,获得积分10
13秒前
zjzjzjzjzj完成签到 ,获得积分10
15秒前
hao完成签到,获得积分10
15秒前
BareBear应助英子采纳,获得10
18秒前
朱南晴完成签到,获得积分10
18秒前
20秒前
不配.应助ziguangrong采纳,获得10
20秒前
Memory完成签到,获得积分10
24秒前
hsgfiw完成签到,获得积分10
26秒前
隐形的大地完成签到,获得积分10
26秒前
wangting发布了新的文献求助10
26秒前
Akim应助顺利的惜文采纳,获得10
28秒前
云中歌完成签到,获得积分10
28秒前
安安放完成签到,获得积分10
29秒前
Liu发布了新的文献求助30
33秒前
Vera完成签到,获得积分10
38秒前
38秒前
zjspidany应助Tao采纳,获得10
38秒前
CipherSage应助博修采纳,获得10
42秒前
欣慰听南发布了新的文献求助10
42秒前
Liu完成签到,获得积分20
43秒前
43秒前
BLCER发布了新的文献求助10
43秒前
子车茗应助洛尘采纳,获得20
43秒前
45秒前
你说的都对完成签到,获得积分10
46秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315281
求助须知:如何正确求助?哪些是违规求助? 2947273
关于积分的说明 8535004
捐赠科研通 2623375
什么是DOI,文献DOI怎么找? 1435021
科研通“疑难数据库(出版商)”最低求助积分说明 665445
邀请新用户注册赠送积分活动 651155