A Three-Stage Multiobjective Approach Based on Decomposition for an Energy-Efficient Hybrid Flow Shop Scheduling Problem

数学优化 作业车间调度 计算机科学 理想溶液 调度(生产过程) 流水车间调度 地铁列车时刻表 多目标优化 整数规划 能源消耗 线性规划 解决方案集 集合(抽象数据类型) 数学 工程类 操作系统 电气工程 物理 热力学 程序设计语言
作者
Biao Zhang,Quan-Ke Pan,Liang Gao,Leilei Meng,Xinyu Li,Kunkun Peng
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (12): 4984-4999 被引量:146
标识
DOI:10.1109/tsmc.2019.2916088
摘要

This paper investigates an energy-efficient hybrid flowshop scheduling problem with the consideration of machines with different energy usage ratios, sequence-dependent setups, and machine-to-machine transportation operations. To minimize the makespan and total energy consumption simultaneously, a mixed-integer linear programming (MILP) model is developed. To solve this problem, a three-stage multiobjective approach based on decomposition (TMOA/D) is suggested, in which each solution is bound with a main weight vector and a set of its neighbors. Accordingly, a variable direction strategy is developed to ensure each solution along its main direction is thoroughly exploited and can jump to the neighboring directions using a proximity principle. To ensure an active schedule of arranging jobs to machines, a two-level solution representation is employed. In the first phase, each solution attempts to improve itself along its current weight vector through a developed neighborhood-based local search. In the second phase, the promising solutions are selected through the technique for order preference by similarity to an ideal solution. Then, they attempt to update themselves with a proposed global replacement strategy via incorporation with their closing solutions. In the third phase, a solution conducts a large perturbation when it goes through all its assigned weight vectors. Extensive experiments are conducted to test the performance of TMOA/D, and the results demonstrate that TMOA/D has a very competitive performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心的火龙果完成签到,获得积分10
1秒前
aa394805712完成签到 ,获得积分10
1秒前
1秒前
1秒前
852应助1111采纳,获得10
2秒前
泡泡茶壶完成签到,获得积分10
2秒前
有魅力的觅双完成签到,获得积分10
2秒前
简单不言完成签到,获得积分10
2秒前
大胆问枫完成签到,获得积分10
3秒前
挽忆逍遥完成签到 ,获得积分10
4秒前
一木完成签到,获得积分10
4秒前
guan完成签到,获得积分10
4秒前
行者发布了新的文献求助10
5秒前
波奇塔发布了新的文献求助10
5秒前
司空绝山完成签到,获得积分10
5秒前
5秒前
泥鳅面完成签到,获得积分10
5秒前
5秒前
所所应助歇洛克采纳,获得10
6秒前
RRRabbit完成签到,获得积分10
6秒前
6秒前
杉杉完成签到 ,获得积分10
6秒前
Adi完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
susan完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
紧张的斩完成签到 ,获得积分10
8秒前
白衣修身完成签到,获得积分10
8秒前
甜美的觅荷完成签到,获得积分10
8秒前
shea完成签到,获得积分10
9秒前
CipherSage应助ahuang采纳,获得10
9秒前
10秒前
2Y_DADA完成签到,获得积分10
11秒前
随随完成签到 ,获得积分10
11秒前
大角牛发布了新的文献求助10
12秒前
le发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645248
求助须知:如何正确求助?哪些是违规求助? 4768236
关于积分的说明 15027213
捐赠科研通 4803788
什么是DOI,文献DOI怎么找? 2568456
邀请新用户注册赠送积分活动 1525787
关于科研通互助平台的介绍 1485451