亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Three-Stage Multiobjective Approach Based on Decomposition for an Energy-Efficient Hybrid Flow Shop Scheduling Problem

数学优化 作业车间调度 计算机科学 理想溶液 调度(生产过程) 流水车间调度 地铁列车时刻表 多目标优化 整数规划 能源消耗 线性规划 解决方案集 集合(抽象数据类型) 数学 工程类 操作系统 电气工程 物理 热力学 程序设计语言
作者
Biao Zhang,Quan-Ke Pan,Liang Gao,Leilei Meng,Xinyu Li,Kunkun Peng
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (12): 4984-4999 被引量:146
标识
DOI:10.1109/tsmc.2019.2916088
摘要

This paper investigates an energy-efficient hybrid flowshop scheduling problem with the consideration of machines with different energy usage ratios, sequence-dependent setups, and machine-to-machine transportation operations. To minimize the makespan and total energy consumption simultaneously, a mixed-integer linear programming (MILP) model is developed. To solve this problem, a three-stage multiobjective approach based on decomposition (TMOA/D) is suggested, in which each solution is bound with a main weight vector and a set of its neighbors. Accordingly, a variable direction strategy is developed to ensure each solution along its main direction is thoroughly exploited and can jump to the neighboring directions using a proximity principle. To ensure an active schedule of arranging jobs to machines, a two-level solution representation is employed. In the first phase, each solution attempts to improve itself along its current weight vector through a developed neighborhood-based local search. In the second phase, the promising solutions are selected through the technique for order preference by similarity to an ideal solution. Then, they attempt to update themselves with a proposed global replacement strategy via incorporation with their closing solutions. In the third phase, a solution conducts a large perturbation when it goes through all its assigned weight vectors. Extensive experiments are conducted to test the performance of TMOA/D, and the results demonstrate that TMOA/D has a very competitive performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乔凌云发布了新的文献求助10
7秒前
18秒前
25秒前
40秒前
罗密欧与沐浴液完成签到 ,获得积分10
42秒前
香蕉觅云应助甜甜的又柔采纳,获得10
48秒前
酷酷静白完成签到 ,获得积分10
58秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
研友_VZG7GZ应助乔凌云采纳,获得10
1分钟前
1分钟前
无情的琳发布了新的文献求助10
1分钟前
无情的琳发布了新的文献求助10
2分钟前
环糊精发布了新的文献求助10
2分钟前
2分钟前
2分钟前
无情的琳发布了新的文献求助10
2分钟前
环糊精完成签到,获得积分10
2分钟前
无情的琳完成签到,获得积分10
2分钟前
2分钟前
orixero应助polaris采纳,获得30
3分钟前
乔凌云发布了新的文献求助10
3分钟前
情怀应助乔凌云采纳,获得10
3分钟前
3分钟前
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
bkagyin应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
polaris完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5802079
求助须知:如何正确求助?哪些是违规求助? 5822839
关于积分的说明 15505815
捐赠科研通 4927944
什么是DOI,文献DOI怎么找? 2652949
邀请新用户注册赠送积分活动 1600002
关于科研通互助平台的介绍 1554846