A Three-Stage Multiobjective Approach Based on Decomposition for an Energy-Efficient Hybrid Flow Shop Scheduling Problem

数学优化 作业车间调度 计算机科学 理想溶液 调度(生产过程) 流水车间调度 地铁列车时刻表 多目标优化 整数规划 能源消耗 线性规划 解决方案集 集合(抽象数据类型) 数学 工程类 操作系统 电气工程 物理 热力学 程序设计语言
作者
Biao Zhang,Quan-Ke Pan,Liang Gao,Leilei Meng,Xinyu Li,Kunkun Peng
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (12): 4984-4999 被引量:146
标识
DOI:10.1109/tsmc.2019.2916088
摘要

This paper investigates an energy-efficient hybrid flowshop scheduling problem with the consideration of machines with different energy usage ratios, sequence-dependent setups, and machine-to-machine transportation operations. To minimize the makespan and total energy consumption simultaneously, a mixed-integer linear programming (MILP) model is developed. To solve this problem, a three-stage multiobjective approach based on decomposition (TMOA/D) is suggested, in which each solution is bound with a main weight vector and a set of its neighbors. Accordingly, a variable direction strategy is developed to ensure each solution along its main direction is thoroughly exploited and can jump to the neighboring directions using a proximity principle. To ensure an active schedule of arranging jobs to machines, a two-level solution representation is employed. In the first phase, each solution attempts to improve itself along its current weight vector through a developed neighborhood-based local search. In the second phase, the promising solutions are selected through the technique for order preference by similarity to an ideal solution. Then, they attempt to update themselves with a proposed global replacement strategy via incorporation with their closing solutions. In the third phase, a solution conducts a large perturbation when it goes through all its assigned weight vectors. Extensive experiments are conducted to test the performance of TMOA/D, and the results demonstrate that TMOA/D has a very competitive performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高海龙完成签到,获得积分10
刚刚
繁荣的悟空完成签到,获得积分10
1秒前
Trost完成签到,获得积分10
1秒前
姜友舜完成签到 ,获得积分10
1秒前
云禾完成签到,获得积分10
1秒前
Owen应助Carol采纳,获得10
2秒前
赘婿应助桔桔采纳,获得10
2秒前
2秒前
Yuki完成签到,获得积分10
3秒前
科研通AI2S应助酸菜余采纳,获得10
4秒前
liuliqiong发布了新的文献求助10
4秒前
hiiamwu完成签到 ,获得积分10
4秒前
一秒的剧情完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
所所应助狗熊采纳,获得10
6秒前
小研家完成签到 ,获得积分10
6秒前
lanlan完成签到,获得积分10
6秒前
韭黄完成签到,获得积分10
6秒前
vogo7发布了新的文献求助10
6秒前
搜集达人应助冷酷严青采纳,获得10
7秒前
彭于晏应助冬瓜鑫采纳,获得10
7秒前
Mockingjay完成签到,获得积分10
7秒前
qq完成签到,获得积分10
7秒前
华仔应助鱼香肉丝采纳,获得10
8秒前
糊糊发布了新的文献求助50
8秒前
沉默小虾米完成签到 ,获得积分10
8秒前
8秒前
不改颜色的孤星完成签到,获得积分10
8秒前
aha洋子完成签到,获得积分10
8秒前
塵埃发布了新的文献求助10
8秒前
乐观的安柏完成签到,获得积分10
8秒前
憨憨发布了新的文献求助10
9秒前
情怀应助超开心采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997