A Three-Stage Multiobjective Approach Based on Decomposition for an Energy-Efficient Hybrid Flow Shop Scheduling Problem

数学优化 作业车间调度 计算机科学 理想溶液 调度(生产过程) 流水车间调度 地铁列车时刻表 多目标优化 整数规划 能源消耗 线性规划 解决方案集 集合(抽象数据类型) 数学 工程类 操作系统 电气工程 物理 热力学 程序设计语言
作者
Biao Zhang,Quan-Ke Pan,Liang Gao,Leilei Meng,Xinyu Li,Kunkun Peng
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (12): 4984-4999 被引量:124
标识
DOI:10.1109/tsmc.2019.2916088
摘要

This paper investigates an energy-efficient hybrid flowshop scheduling problem with the consideration of machines with different energy usage ratios, sequence-dependent setups, and machine-to-machine transportation operations. To minimize the makespan and total energy consumption simultaneously, a mixed-integer linear programming (MILP) model is developed. To solve this problem, a three-stage multiobjective approach based on decomposition (TMOA/D) is suggested, in which each solution is bound with a main weight vector and a set of its neighbors. Accordingly, a variable direction strategy is developed to ensure each solution along its main direction is thoroughly exploited and can jump to the neighboring directions using a proximity principle. To ensure an active schedule of arranging jobs to machines, a two-level solution representation is employed. In the first phase, each solution attempts to improve itself along its current weight vector through a developed neighborhood-based local search. In the second phase, the promising solutions are selected through the technique for order preference by similarity to an ideal solution. Then, they attempt to update themselves with a proposed global replacement strategy via incorporation with their closing solutions. In the third phase, a solution conducts a large perturbation when it goes through all its assigned weight vectors. Extensive experiments are conducted to test the performance of TMOA/D, and the results demonstrate that TMOA/D has a very competitive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixiangrui110发布了新的文献求助10
1秒前
善学以致用应助楚岸采纳,获得10
2秒前
cilan发布了新的文献求助10
2秒前
2秒前
卡卡发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
李李完成签到,获得积分10
4秒前
静静子发布了新的文献求助10
4秒前
fy207完成签到,获得积分10
5秒前
5秒前
和谐的乌冬面完成签到,获得积分20
6秒前
xiaoyudianddd发布了新的文献求助10
6秒前
医学僧完成签到,获得积分10
6秒前
6秒前
gejun完成签到,获得积分20
6秒前
6秒前
汉关完成签到,获得积分10
6秒前
Happy422发布了新的文献求助10
7秒前
枫叶发布了新的文献求助10
7秒前
幽默的宛白完成签到,获得积分20
7秒前
gcc应助小小杜采纳,获得20
7秒前
小马甲应助黑熊安巴尼采纳,获得10
7秒前
8秒前
bkagyin应助junzilan采纳,获得10
8秒前
Young完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
daniel完成签到,获得积分10
10秒前
不爱学习的小渣渣完成签到,获得积分10
10秒前
10秒前
情怀应助欢喜的毛豆采纳,获得10
11秒前
勖勖发布了新的文献求助10
11秒前
自然的飞鸟完成签到,获得积分0
11秒前
12秒前
黑熊安巴尼完成签到,获得积分20
13秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808