A Three-Stage Multiobjective Approach Based on Decomposition for an Energy-Efficient Hybrid Flow Shop Scheduling Problem

数学优化 作业车间调度 计算机科学 理想溶液 调度(生产过程) 流水车间调度 地铁列车时刻表 多目标优化 整数规划 能源消耗 线性规划 解决方案集 集合(抽象数据类型) 数学 工程类 操作系统 电气工程 物理 热力学 程序设计语言
作者
Biao Zhang,Quan-Ke Pan,Liang Gao,Leilei Meng,Xinyu Li,Kunkun Peng
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (12): 4984-4999 被引量:124
标识
DOI:10.1109/tsmc.2019.2916088
摘要

This paper investigates an energy-efficient hybrid flowshop scheduling problem with the consideration of machines with different energy usage ratios, sequence-dependent setups, and machine-to-machine transportation operations. To minimize the makespan and total energy consumption simultaneously, a mixed-integer linear programming (MILP) model is developed. To solve this problem, a three-stage multiobjective approach based on decomposition (TMOA/D) is suggested, in which each solution is bound with a main weight vector and a set of its neighbors. Accordingly, a variable direction strategy is developed to ensure each solution along its main direction is thoroughly exploited and can jump to the neighboring directions using a proximity principle. To ensure an active schedule of arranging jobs to machines, a two-level solution representation is employed. In the first phase, each solution attempts to improve itself along its current weight vector through a developed neighborhood-based local search. In the second phase, the promising solutions are selected through the technique for order preference by similarity to an ideal solution. Then, they attempt to update themselves with a proposed global replacement strategy via incorporation with their closing solutions. In the third phase, a solution conducts a large perturbation when it goes through all its assigned weight vectors. Extensive experiments are conducted to test the performance of TMOA/D, and the results demonstrate that TMOA/D has a very competitive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小会发布了新的文献求助30
1秒前
1秒前
青铜葵完成签到,获得积分10
2秒前
2秒前
小柒发布了新的文献求助10
3秒前
4秒前
4秒前
一条咸鱼完成签到,获得积分10
5秒前
ding应助高贵季节采纳,获得10
5秒前
酷炫灵安完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
orixero应助kjding采纳,获得10
8秒前
9秒前
nenoaowu发布了新的文献求助100
9秒前
李博士发布了新的文献求助10
9秒前
Dr_zsc完成签到,获得积分10
10秒前
chrissylaiiii发布了新的文献求助10
13秒前
Dr_zsc发布了新的文献求助10
14秒前
14秒前
赘婿应助小柒采纳,获得10
15秒前
初初完成签到,获得积分10
15秒前
16秒前
遇事不决睡大觉完成签到,获得积分10
16秒前
17秒前
kksk发布了新的文献求助50
18秒前
18秒前
初初发布了新的文献求助10
20秒前
小会完成签到,获得积分10
21秒前
今后应助wxp采纳,获得10
21秒前
Ava应助垚垚采纳,获得10
22秒前
大个应助shen5920采纳,获得10
22秒前
23秒前
24秒前
gugu完成签到 ,获得积分10
24秒前
24秒前
26秒前
27秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142138
求助须知:如何正确求助?哪些是违规求助? 2793085
关于积分的说明 7805514
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303274
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291